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ABSTRACT

Building on work showing the harmfulness of annotation errors for both the train-

ing and evaluation of natural language processing technologies, this thesis develops a

method for detecting and correcting errors in corpora with linguistic annotation. The

so-called variation n-gram method relies on the recurrence of identical strings with

varying annotation to find erroneous mark-up.

We show that the method is applicable for varying complexities of annotation.

The method is most readily applied to positional annotation, such as part-of-speech

annotation, but can be extended to structural annotation, both for tree structures—

as with syntactic annotation—and for graph structures—as with syntactic annotation

allowing discontinuous constituents, or crossing branches.

Furthermore, we demonstrate that the notion of variation for detecting errors

is a powerful one, by searching for grammar rules in a treebank which have the

same daughters but different mothers. We also show that such errors impact the

effectiveness of a grammar induction algorithm and subsequent parsing.

After detecting errors in the different corpora, we turn to correcting such errors,

through the use of more general classification techniques. Our results indicate that the

particular classification algorithm is less important than understanding the nature of

the errors and altering the classifiers to deal with these errors. With such alterations,

we can automatically correct errors with 85% accuracy. By sorting the errors, we can
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relegate over 20% of them into an automatically correctable class and speed up the

re-annotation process by effectively categorizing the others.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

In this thesis, we will pursue a method for detecting errors in annotated corpora,

and as a first step we set out here the desiderata for this line of research. Minimally,

there are the following considerations: 1) The annotation of corpora actually contains

errors. Although effective error detection can prove if there are errors, we at least

need indications that the search is not futile. 2) The presence of annotation errors is

detrimental to the intended uses of the corpora. If errors are harmless, or even helpful,

then again there is little point in isolating them and correcting them. 3) It is actually

possible to find the errors in a systematic way. With annotated corpora as large as

they currently are—in the millions and hundreds of millions of words—methods for

detecting errors must be automatic and generally applicable.

That corpora are erroneous and that the errors are problematic is demonstrated in

sections 1.1.2 and 1.2, respectively, and previous attempts at systematically finding

errors are presented in section 1.3. Building on these attempts, this dissertation

will develop a particularly useful method for both detecting and correcting errors in

annotated corpora, based on inconsistencies in the annotation, i.e., recurrences of

the same material with different annotations. First, however, we must look at the

different kinds of annotated corpora and the range of uses for such corpora.
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1.1 Gold standard annotated corpora

1.1.1 The use of annotated corpora

Annotated corpora are large bodies of text with linguistically-informative mark-

up. As such, they provide training material for research on natural language process-

ing algorithms and serve as a gold standard for evaluating the performance of such

tools.

Corpora have been essential for training and testing algorithms in a wide range

of areas, such as in tagging and morphological analysis (e.g., Brill, 1995a; Daelemans

et al., 1996), parsing (e.g., Atwell, 1993; Briscoe, 1994; Ramshaw and Marcus, 1995;

Collins, 1996), term and name identification (e.g., Bikel et al., 1999), word sense

disambiguation (e.g., Brown et al., 1991; Gale et al., 1992; Segond et al., 1997), and

anaphora resolution (e.g., Rocha, 1997; Mitkov et al., 1997). Annotated corpora

are also used to develop human language technology applications such as machine

translation (e.g., Berger et al., 1994), document classification (e.g., Ragas and Koster,

1998; Zavrel et al., 2000), or information retrieval (e.g., Riloff, 1993; Soderland et al.,

1995), as well as in linguistic research (e.g., Wichmann, 1993; Sampson, 1996; Meurers,

2005).

The supervised models mostly used in statistical natural language processing

which underlie many of these applications require training on corpora that are anno-

tated with the particular linguistic properties intended to be learned. The nature of

the annotations and the annotation schemes for written corpora include a wide range

of linguistic information, such as morphological (e.g., Leech, 1997; Santorini, 1990;

Sampson, 1995; Schiller et al., 1995), syntactic (e.g., Marcus et al., 1993; Hajič, 1998;

Sampson, 1995; Skut et al., 1997), semantic (e.g., Kingsbury et al., 2002; Hajičová,

2



1998; Erk et al., 2003), and discourse (e.g., Allen and Core, 1996) distinctions. The

information encoded in these annotations represents significant abstraction and gen-

eralization from the data and at present require manual correction or annotation to

obtain annotated corpora of high-quality.

Each annotation layer is important for a variety of uses, including serving as in-

put for processing of other annotation layers. For example, part-of-speech (POS)

annotated text is used as input for syntactic processing, for practical applications

such as information extraction, and for linguistic research making use of POS-based

corpus queries. Annotated corpora are also essential as gold standards for testing

the performance of human language technology, regardless of whether the model is

statistical or rule-based in nature. Additionally, the linguistic use of corpora (e.g.,

Wichmann, 1993; Sampson, 1996; Meurers, 2005) often corresponds to using the an-

notations to search for a particularly theoretically-interesting pattern. Thus, for both

computational and theoretical linguistic purposes, it is crucial that annotations be of

a sufficiently high quality.

1.1.2 The nature of a gold standard corpus

As mentioned, reference corpora annotated with part-of-speech tags or syntactic

labels, such as the British National Corpus (BNC) (Leech et al., 1994a), the Penn

Treebank (Marcus et al., 1993), or the German NEGRA Treebank (Skut et al., 1997)

play an important role for current work in computational linguistics, so great care has

gone into developing such corpora. For example, the gold-standard POS-annotation

for such large reference corpora is generally obtained using an automatic tagger to

produce a first annotation, followed by human post-editing. While Sinclair (1992)
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provides some arguments for prioritizing a fully automated analysis, human post-

editing has been shown to significantly reduce the number of POS-annotation errors.

Brants (2000a) discusses that a single human post-editor reduces the 3.3% error rate

in the STTS annotation of the German NEGRA corpus produced by the TnT tagger

to 1.2%. Baker (1997) also reports an improvement of around 2% for a similar experi-

ment carried out for an English sample originally tagged with 96.95% accuracy by the

CLAWS tagger. And Leech (1997) reports that manual post-editing and correction

done for the 2-million word core corpus portion of the BNC, the BNC-sampler, re-

duced the approximate error rate of 1.7% for the automatically-obtained annotation

to less than 0.3%.

Despite these gains, the presence of human annotators or correctors introduces

another source of potential error: humans are prone to mistakes, fatigue, and misin-

terpretation of guidelines. Unlike a purely automatic system, human annotators can

introduce inconsistencies: if a post-editing correction has been made once, there is no

guarantee it will be made every time it applies across the corpus. Ratnaparkhi (1996)

demonstrates this vividly: he runs a consistency check on the Wall Street Journal

(WSJ) corpus by examining how certain words were labeled by different annotators.

He finds biases for different parts of speech based on who the annotator was: the

tagging distribution for a word changes when the annotator does.1

Corpora which have been in existence for some time and have undergone careful

revisions (e.g., the Lancaster-Oslo-Bergen (LOB) corpus (Johansson, 1986; Garside

et al., 1987) and the SUSANNE corpus (Sampson, 1995)) likely have low error rates,

1Because of these facts, Ratnaparkhi (1996) suggests training and testing on texts annotated by
the same person. This admittedly does not alleviate problems of intra-annotator inconsistency, and
does nothing to handle the problem of annotation which is consistently wrong.
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although no error estimates are provided for these particular corpora. Likewise, the

error rates for carefully-constructed and documented corpora are likely to contain

relatively few errors. However, with 200 million words, even a carefully-constructed

corpus like the Bank of English (Järvinen, 2003) is likely to contain errors. And the

Penn Treebank, one of the most commonly-used corpora, has an estimated error rate

of 3% (Marcus et al., 1993). It is clear, then, that “gold standard” corpora contain

errors in their annotation.

1.2 Errors and their effects

Even if there are errors, it might be the case that they are harmless, or possibly

even helpful, for the intended uses. We will show, however, that the proliferation of

errors in corpora has a negative impact on natural language processing technologies

which train and test on them. To do so, let us first demonstrate why and how er-

rors might be problematic. As a concrete example of the kind of system where the

validity of a corpus is important for learning, induced grammars (Charniak, 1996)

are automatically derived from treebanks. They rely on the corpus annotation to

form grammar rules. If many of these rules are ill-formed due to errors in the input,

this can result in extra rules, increasing the size of the set of grammar rules. De-

tecting erroneous annotation can potentially reduce the number of rules and thereby

improve the efficiency of a parser using the grammar. Furthermore, as we will show

in section 3.3, removing erroneous annotation can also improve the quality of the

grammar.
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To take another example of the potential effect of errors, consider the case where

the original data is equally correct and incorrect for a particular construction, and

an algorithm has to separate the signal from the noise. Focusing in on part-of-speech

tagging, for example, Dickinson and Meurers (2003a) report that in the Wall Street

Journal (WSJ) corpus, a part of the Penn Treebank 3 project (Marcus et al., 1993),

in the bigram Salomon Brothers, Brothers is tagged 42 times as NNP and 30 times

as NNPS,2 and this is only one of many NNP/NNPS confusions. Both taggings have

approximately the same weight, so it is not clear what the appropriate rule is to learn

from this situation.

1.2.1 Effects on classifiers

Training data errors Errors in the training data can have a big impact on classi-

fiers. Ali and Pazzani (1996) show that when they introduced “class noise” to various

data sets, their ensemble classifiers performed less well than single model classifiers.

Class noise is noise in the labeling of an instance in the data (as opposed to noise

in the attributes, or features, pertinent to an instance); thus, errors in the part of

speech in a corpus are instances of class noise. As Zhu and Wu (2004) point out,

one relevant source of class noise is that of contradictory examples, i.e., “The same

examples appear more than once and are labeled with different classifications.” This

case is of particular interest for the approach we will develop.

Zhu and Wu (2004) additionally note that in a series of experiments with different

classifiers, “the classification accuracies decline almost linearly with the increase of

the noise level” for almost all datasets they tested. Quinlan (1986) also showed that

2The tags have the following meanings: NNP = singular proper noun, NNPS = plural proper
noun. See section 2.2.3 for more details on this distinction.
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“[d]estroying class information [adding errors to the data] produces a linear increase in

error so that, when all class information is noise, the resulting decision tree classifies

objects entirely randomly.”

In the realm of part-of-speech tagging, the presence of errors in the training data

used has been well-noted. Brill and Pop (1999) note that extracting a lexicon from

a tagged corpus for their tagger results in a noisy lexicon. For instance, in the WSJ

(Marcus et al., 1993), the word the is tagged six different ways, but the distribution is

highly skewed due to errors: DT occurs 57,973 times, NNP occurs 5 times, JJ occurs

3 times, and VBP, NN|DT, and NN occur once each.3 By filtering out a certain

percentage of infrequently-occurring tags, Brill and Pop (1999) improve the accuracy

of one tagger from 81.3% to 95.9% and another from 82.6% to 90.6%. These dramatic

increases in quality are likely why Schmid (1997) also removed tags from his lexicon,

filtering out tags which occurred less than 1% of the time for a word.

We should mention that a problem with such an approach for handling errors

is that it potentially removes true linguistic information along with erroneous data

since rare examples do occur (e.g., see the discussion of Zipf’s law in chapter one

of Manning and Schütze (1999)). This is also the case for syntactic annotation,

where approaches to grammar induction like Gaizauskas (1995) and Krotov et al.

(1998) obtain reasonable results by thresholding and removing non-frequent rules.

One might be able to achieve good results with such techniques, but at some point,

the coverage of the grammar, or model, will be limited because rare patterns will

have been eliminated. Indeed, Daelemans et al. (1999) performed experiments on

3The tags have the following meanings: DT = determiner, NNP = singular proper noun, JJ =
adjective, VBP = non-3rd person singular present verb, NN = singular or mass noun. A bar (|)
indicates uncertainty between two tags.
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four different NLP tasks4 and found that removing atypical instances from training

was detrimental to learning. As they state, “for language learning tasks, it is very

difficult to discriminate between noise on the one hand, and valid exceptions and

sub-regularities that are important for reaching good accuracy on the other hand.”

With errors in the training data, we cannot sufficiently answer the question of what

the methods are doing when filtering: are they removing noise? Or are they betting

that correct rules will never appear?

Ratnaparkhi (1996) examines the effects of errors on his maximum entropy tagger

in detail, specifically errors which are due to inconsistencies in the corpus. Since

the maximum entropy tagger maintains a close fit with the training data, it is likely

that any noise in the data will be modeled by the tagger. Indeed, many words with

variation in tagging, such as that and about, are found to be problematic for the

tagger. Ratnaparkhi (1996) lexicalizes the tagger, i.e., allows the context to consist

of words and not just tags, to deal with these problematic words. Because this

lexicalization provides more information about these words, it should result in an

improvement in tagging accuracy. The tagging, however, gets no better and even

becomes worse for some words, due to inconsistencies found in the training data, i.e.,

no single consistent pattern can be deduced which is correct. Although it depends on

the underlying model, the experiments in Ratnaparkhi (1996) show that inconsistent

training data can lead to worse tagger performance.

4The four tasks are: grapheme-phoneme conversion, part-of-speech tagging, prepositional phrase
attachment, and base noun phrase chunking. See references in Daelemans et al. (1999) for similar
work on other NLP tasks, such as pseudo-word sense disambiguation.
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This fact is confirmed by both Kübler and Wagner (2000) and Květǒn and Oliva

(2002). Kübler and Wagner (2000) distinguish four kinds of errors (described in

section 1.2.2) which they introduced into a corpus. They show that for a training

corpus with any one of those kinds of errors, tagger performance is significantly worse

as compared to a corpus without such introduced errors. For example, a tagger trained

on an unchanged 24,082 sentences obtained a 1.95% error rate on the test corpus. For

a training set with potentially ambiguous words (“AMBI”) being erroneously tagged,

the error rate is 2.86% on the same test set; other training sets result in even higher

error rates.

Květǒn and Oliva (2002) demonstrate that with their method of finding errors in

a corpus (described in section 1.3.3), they are able to improve tagger results. One

experiment consisted of training and testing on their cleaned data, resulting in a

lowering of the error rate to 3.07%, as compared to an error rate of 3.14% when

training and testing on the original data. More enlightening is the fact that training

on the uncorrected version of the corpus, but testing on the clean version, resulted in

an error rate of 3.41%, significantly higher than the 3.07% error rate obtained when

the training data was also cleaned. By keeping all other factors equal, this disparity

shows that the quality of the training data can significantly impact the performance

of a tagger.

Testing data errors While training data errors affect the classification model,

testing data errors are vitally important in classifier evaluation. This was just shown

in Květǒn and Oliva (2002): keeping the training data constant as the original data,

the cleaned testing data has an error rate of 3.41%, while the original testing data
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has a significantly lower error rate, that of 3.14%. This again highlights the negative

effect of corrupted training data, but it also shows that the nature of the testing data

has a profound impact on what error rates will be reported by classifiers.

The conclusion that the quality of the testing data affects precision and error

rates is backed up by other researchers. Working with the written half of the BNC-

sampler (Leech, 1997), van Halteren (2000) examines cases where his WPDV5 tagger

(van Halteren et al., 2001) disagrees with the BNC annotation; he reports that in

13.6% of the cases, the cause is an error in the BNC annotation. The percentage

of disagreement caused by BNC errors rises to 20.5% for a tagger trained on the

entire corpus. van Halteren (2000) goes on to show that many of the errors fall into

various inconsistency classes, such as inconsistent choices made between adjective

(JJ) and verbal gerund (VVG) for noun-modifying words ending in ing. Blaheta

(2002) likewise shows that for his function tag assignment algorithm, 18% of the

disagreements with the WSJ benchmark are treebank errors, and 13% more are not

covered by the guidelines.

Turning to cross-corpus comparison, van Halteren et al. (2001) compare the results

of taggers trained and tested on the WSJ corpus (Marcus et al., 1993) with results

from training and testing on the LOB corpus (Johansson, 1986) and find that the

results for the WSJ are significantly worse. By examining a tenth of the test sets of

both corpora, van Halteren et al. (2001) discover that these lower accuracy figures

are due to inconsistencies in the WSJ corpus. They found that 44% of the errors

for their best tagging system were caused by “inconsistently handled cases.” Thus,

5WPDV = Weighted Probability Distribution Voting algorithm.
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both van Halteren (2000) and van Halteren et al. (2001) show that benchmark errors,

especially errors which are inconsistencies, have a profound impact on the accuracy

figures reported for classifiers.

To emphasize this point, building on a mention of tagging errors caused by noise

in the data in Marquez and Padro (1997), Padro and Marquez (1998) mathematically

demonstrate that tagger evaluation is questionable when the testing data contains

errors. Depending on the corpus error rate, the true accuracy of a classifier could

be much better or worse than reported. This is, of course, a major problem when

state-of-the-art taggers claim superiority based on slightly better precision rates.

Given a reported tagger accuracy rate K and a corpus error rate C, we want to

find the true tagger accuracy rate, x. Padro and Marquez (1998) show that x is

between xmin and xmax, as given in (1), where p is the probability that the tagger

and the corpus are both wrong in the same way.

(1) a. xmin = K − Cp

b. xmax =

{

K + C if K ≤ 1 − C
1 − K+C−1

p
if K ≥ 1 − C

}

Thus, xmin is calculated by subtracting from the reported accuracy rate the per-

centage of the corpus where both the corpus and the tagger are wrong in the same

way. This accuracy (xmin) number accounts for only those situations where the corpus

and the tagger are both right; situations where the tagger is right but the corpus is

wrong are not considered, which is why xmax is needed. The xmax value is calculated

by one of two methods. In the first case, we add the corpus error rate (C) to the

tagger accuracy rate (K), i.e. assume every time the corpus is wrong, the tagger is

right. In the second, we calculate similarly, but factor out the times when the corpus

and the tagger are both wrong (p).

11



Coming up with reasonable estimates for p affects what the true tagger accuracy

estimates are, but we know that 0 ≤ p ≤ 1, since p is a probability. So, if a tagger

has a 93% reported accuracy on a corpus with 3% errors, the real tagger accuracy x

is between the ranges of [0.93, 0.96] (p = 0) and [0.90, 0.96] (p = 1).6

Padro and Marquez (1998) show how, given narrower, more reasonable estimates

for p, the true tagger accuracy of two taggers can overlap. The example they use is of

taggers with the following rates for ambiguous words: K1 = 91.35% and K2 = 92.82%.

Both were tested on the WSJ, with an estimated error rate of 3%. The range of true

accuracy rates, xi, is shown in (2), where the important thing to note is how they

overlap (e.g. between 92.82 and 94.05 in the case of pi = 0.4). Thus, because of errors

in the testing data, it is not clear which tagger is actually better.

(2)
pi = 0.4 pi = 1

K1 = 91.35 x1 ∈ [91.35, 94.05] x1 ∈ [90.75, 93.99]
K2 = 92.82 x2 ∈ [92.82, 95.60] x2 ∈ [92.22, 95.55]

1.2.2 Types of errors

As mentioned above, van Halteren (2000) and van Halteren et al. (2001) found

classes of inconsistencies in their work on POS annotation. That is, there were recur-

ring patterns of variation between certain labels for items that were the same (e.g.,

the same word). Ratnaparkhi (1996) also distinguishes inconsistent labeling as a par-

ticularly problematic kind of error. As described in chapters 2 and 3, Dickinson and

Meurers (2003a,b) confirm the presence of inconsistencies in both POS-annotated and

syntactically-annotated corpora. Inconsistencies are clearly a prevalent kind of error,

6As a quick shorthand, then, one can simply add or subtract the corpus error rate from the tagger
accuracy rate.

12



but in distinguishing different kinds of errors we can make other classifications. Much

work has gone into classifying the types of corpus errors, with the hope that this will

aid in corpus error detection and error correction.

Blaheta (2002) provides a categorization of errors into three classes, based on

whether an error is detectable and automatically correctable (type A),7 fixable but

needs human intervention to correct (type B), or is not covered by the annotation

guidelines (type C).8 Using this typology, human inspection and hand-written rules

are used for error detection and correction.

The distinction between type A and type B errors is also made in Oliva (2001),

who writes rules to detect errors in a corpus, noting that some rules need human as-

sistance to correct, while others can be automatically corrected. Leech et al. (1994b)

also report that post-editors for the BNC-sampler were instructed to focus on cer-

tain tag combinations, highlighting the fact that certain recurring tag patterns were

problematic and needed human post-editors to determine the correct analysis.

As an example of an error which needs human correction, Marquez and Padro

(1997) discuss the distinction between adjective (JJ) and verbal gerund (VBG) in the

Penn Treebank which occurs in “sentences with no structural differences.” Likewise,

distinctions between adjectives (JJ) and nouns (NN) often come down to semantic

7A distinction not made in Blaheta (2002) is between automatically detectable errors which need
manual correction and errors which require even manual detection. Since manual detection would
be highly labor-intensive, we focus on automatic detection only.

8Blaheta (2002) refers to type C errors as systematic inconsistencies, but we will not use that
term to avoid confusion with the use of inconsistency to simply mean that tagging practices were
not consistently applied over the whole corpus, regardless of if the source of inconsistency was
unclear/missing guidelines, misapplication of guidelines, or general human error. It should be noted
that Ule and Simov (2004) also make a distinction between violations of annotation guidelines and
violations of language principles not covered by the annotation guidelines ; we will say more on
annotation guidelines in section 1.3.2.
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differences (Marquez and Padro, 1997). In this case, the reason for a non-automatic

method of correction is due to the design of the tagset, which is discussed more in

section 2.2.3.

Errors like this arise because of ambiguous words, and one way of defining error

types is to look more specifically at problematic ambiguities. Volk and Schneider

(1998), for example, view error types for classifier output as 〈corpus label, tagger

label〉 pairs. A set of these pairs for a corpus can give a good indication of which tag-

ging distinctions are difficult for a tagger to maintain over the entire corpus. Likewise,

the development of the BNC included the use of portmanteau tags, a tag indicating a

disjunction of possible tags (Eyes and Leech, 1992; Leech et al., 1994b). These were

added after an initial tagger had already been run, based on decisions known to be

problematic for their tagger.

As van Halteren (2000) and van Halteren et al. (2001) point out, frequent occur-

rences of difficult tagging decisions are likely to indicate an error in the benchmark

corpus. In fact, van Halteren (2000), van Halteren et al. (2001), and Dickinson and

Meurers (2003a) all show that we can define an error type as a 〈corpus label 1, corpus

label 2〉 pair, or as a set of corpus labels. Certain label variations can be problematic

regardless of context, or they can be problematic in a given context (Dickinson and

Meurers, 2003a). As an example of the former, van Halteren et al. (2001) discuss the

inconsistent use of the labels NNP (proper noun) and NNPS (plural proper noun) in

the WSJ: e.g., Securities (146 NNP vs. 160 NNPS).9 The latter case of two labels for

the same word/string in the same context is discussed in chapter 2. Note that the

9This problematic tagging distinction was independently discovered in Dickinson and Meurers
(2003a).
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NNP/NNPS distinction cannot be resolved by the definitions given in the guidelines

and so falls into what Blaheta (2002) defines as type C errors. In general, though,

these errors based on ambiguities/variations can be any one of type A, B, or C.

What this research is pointing to is a definition of an ambiguity class. An am-

biguity class (e.g., Cutting et al., 1992) is a set of words with the same ambiguities.

Words could be grouped into classes based on the amount of ambiguity they manifest

(akin to classes with the same polysemy levels in Kilgarriff (1998)), but given that it

is the particular distinctions which have a strong impact on tagging, the notion of an

ambiguity class is more useful for defining errors. Ambiguities can lead to variation,

and variation between two or more labels for a given word or string seems to be a

common problem.

Do we know, however, that these so-called variation errors specifically affect tagger

performance? Kübler and Wagner (2000) define four error types (alternatively viewed

as two binary-valued types): 1) the wrong tag is a possible tag for the word (“AMBI”),

2) the wrong tag is not a possible tag for the word (“NOT-AMBI”), 3) the major part-

of-speech category is correct, but not the more fine-grained distinctions (“MCAT”),

and 4) the major part-of-speech category is incorrect (“NOT-MCAT”). This distinc-

tion helps pinpoint the most problematic errors: NOT-AMBI and NOT-MCAT cause

more degradation in the accuracy of the tagger than their counterparts, presumably

because they provide data which can never be true. That is, errors where the wrong

tag is a possible tag for that word (AMBI) are actually less problematic than errors

where the tag is not even possible (NOT-AMBI). And, due to lexica, NOT-AMBI

(and NOT-MCAT) errors are easier to detect (Kübler and Wagner, 2000).
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However, this does not tell us how much of an impact variation errors have on

tagger performance. Although ambiguities often lead to variations, AMBI errors

and variation errors are not the same thing; variation between two labels can in

principle be a NOT-AMBI error, as the example of the in the WSJ mentioned before

demonstrates. In that case, the has variation between six different tags, five of which

are not possible tags for it. There is a good deal of overlap between AMBI errors

and variation errors, though, and so it is important to note that AMBI errors are

still a problem: as mentioned before, training on them increased the error rate on one

corpus from 1.95% to 2.86%.

Also noteworthy is that Kübler and Wagner (2000) gathered their training data

of erroneous corpora by running a poorly-trained tagger on the corpus and keeping

the appropriate kind of errors, as compared to the original corpus. Even though this

does give a good indication of how different kinds of errors are problematic, it gives

no indication of how many errors are actually present in the corpus. So, practically

speaking, we cannot tell which errors are most problematic from this work, and other

work (Ratnaparkhi, 1996; van Halteren, 2000; van Halteren et al., 2001; Dickinson and

Meurers, 2003a,b) indicates that errors stemming from ambiguous words are indeed

problematic.

1.3 The elimination of errors

We have established the existence of annotation errors in corpora and shown that

they are a hindrance to both training and testing natural language technologies. We

now turn to methods which have been proposed to prevent or remove errors from
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a corpus. In addition to confirming the preponderance of errors in corpora, the

following will show that there are systematic ways to find and fix certain errors, and

our approach will build on this groundwork.

1.3.1 Manual and semi-automatic error detection and cor-

rection

As will be more fully discussed in the problematic cases part of section 2.2.3,

the first step to preventing errors comes by having a well-defined set of guidelines.

Indeed, as Wynne (1996) mentions, “Probably the best way to ensure that the tagging

of a large body of text remains as consistent as possible is to build up a ’caselaw’ of

. . . tagging decision[s] as they are made.” This helps for constructing an initial corpus

and for defining standards of annotation, but we are here interested in improving the

state of an already-annotated corpus.

Even though human post-editing can significantly improve the corpus (Baker,

1997; Leech, 1997; Brants, 2000a), for very large corpora—often in the range of 100-

200 million words—it is in practice impossible to detect and correct all errors man-

ually. A small subset of the corpus, however, can be examined and fixed (Eyes and

Leech, 1992; Järvinen, 2003). Problematic decisions can be identified and searched

for in the rest of the corpus. Similarly, to build a sense-tagged corpus, Kilgarriff

(1998) suggests sampling from the word types in the corpus and from those word

types sampling their corpus instances. From these samples, one can find what kind

of tagging issues arise.

Skut et al. (1997) mention using previously-annotated data to train their classifiers

for further annotation on unseen data in constructing a corpus. This idea can be

adapted to fixing the annotation of seen data by training on cleaned data in order
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to compare the learned model to the parts of the corpus which have not yet been

manually checked. In this way, decisions made in the carefully cleaned part of the

corpus can be extended to the rest of the corpus. This line of thinking is similar to

active learning (e.g., Cohn et al., 1994; Dagan and Engelson, 1995; Thompson et al.,

1999). In the case of active learning, one uses judgments on labeled data to select the

next data to label, and this is done by finding new data which is sufficiently different

from previously-seen data. Here, we are using cleaned labeled data to select corpus

positions which are sufficiently similar yet do not match in annotation.

In an effort to generalize a judgment made one time to the rest of the corpus, Wallis

(2003) argues for moving from a sentence-by-sentence correction approach (longitudi-

nal correction) to what he calls transverse correction: correction on a construction-

by-construction basis across the whole corpus. In this way, problematic constructions

can be identified and treated in a consistent fashion. Likewise, Oliva (2001) and

Blaheta (2002) manually write rules to identify errors across the whole corpus. In

all these cases, although the searching is done automatically, a human must specify

what patterns to search for, and there is no way to ensure that all errors, or all types

of errors, will be found.

Hinrichs et al. (2000) also mention running “automatic consistency checks” on

the Tübingen treebanks. A manually-selected type of annotation is searched for, and

the non-majority annotations are flagged as possible errors. Kordoni (2003) describes

this for the Verbmobil project as follows:

In brief, each time it was called the program was given the type of phrase to be

checked, and it extracted all strings of words in the corpus which were anno-
tated with the specific phrasal type. If the annotations differed, the program

selected the annotation which was used in most cases and output the deviant
cases for further inspection by the annotator.
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The program described in Kaljurand (2004) can be seen as one way to implement

this and similar consistency checks by searching for strings of words, POS-tags, or

syntactic function labels which receive different annotations. Similar to these ap-

proaches, but driven by the data, the proposal we will make in chapter 2 presents an

automatic way to specify problematic constructions.

Alternatively, one can specify which constructions are allowed in the corpus. A

technique used by Bond et al. (2004) and Oepen et al. (2004) to ensure consistency in

a corpus with syntactic annotation is to build a treebank in parallel with a grammar.

The grammar feeds into the annotation, and the treebank provides feedback for the

grammar. The result of this is that every treebank annotation must have a well-

formed parse; otherwise, the grammar could not have suggested it. This approach,

while useful and theoretically attractive, requires a significant amount of resources

to construct the grammar, ensure its robustness, and to manually disambiguate the

parser output.

1.3.2 Interannotator agreement

Another technique to ensure that corpora are closer to what humans view as

the true analysis compares the analyses of multiple annotators for the same corpus

positions. Kilgarriff (1998) outlines what he views as the requirements for producing a

gold standard corpus: 1) require multiple people to label [the same corpus positions],

2) calculate the rate of interannotator agreement, and 3) determine if the agreement

rate is high enough.
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Running interannotator experiments produces varied results for different researchers.

As a method of post-editing, Marcus et al. (1993) report agreement rates of 96.5%.

This seems to support claims in Church (1992) of a 97% upper bound to tagging, i.e.

there is a 3% residue of the corpus for which human annotators cannot agree on the

right analysis.10 However, Baker (1997) reports interannotator consistency rates of

98.8% on the BNC-sampler, and Brants (2000a) mentions agreement rates of 98.57%

for POS-tagging in the NEGRA corpus.

The agreement rate does not tell the whole story, and so Kilgarriff (1998) states

that discrepancies in labeling need to be examined to see if the disagreement between

annotators is a real disagreement or an accident. If it is an accident, the correct label

can be easily agreed upon. If the disagreement is real, the source of disagreement can

probably be attributed to the annotation scheme; the variety of annotation schemes

is what causes such a variety of results above.

As Kilgarriff (1998) points out, if the disagreement is real, the cause is either a

true ambiguity in the data or a poor definition of the labels, i.e., poor guidelines. Both

of these can be dealt with by specifying a clearer annotation scheme (Baker, 1997).

In fact, Voutilainen and Järvinen (1995) show that 100% interannotator agreement

is possible for both part-of-speech and syntactic annotation when difficult distinc-

tions are eliminated. Interannotator agreement rates are thus highly determined by

the annotation scheme and guidelines, and there is some research (e.g. Sampson and

Babarczy, 2003) on defining annotation schemes which do not require human anno-

tators to make distinctions that cannot be made reliably.

10Baker (1997) reports that Church has stated (in 1996) that there is a 5% residue.
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Corpus development work like Brants et al. (2002) uses interannotator disagree-

ments as indicators of where the annotation scheme needs improvement. And work

such as Brants (2000a) shows that testing interannotator agreement can pinpoint

problematic tagging decisions, highlighting where either the scheme or the guidelines

need to be revised.

We have mostly discussed interannotator agreement for positional annotations;

testing interannotator agreement for structural and other complex forms of annota-

tion requires more work to determine how similar the analyses are. Defining similar-

ity of complex annotations is non-trivial, as shown by the difficulties surrounding the

comparison of parser output (Carroll et al., 2002). Brants and Skut (1998) discuss

automating the comparison of two syntactic annotations of a sentence in interanno-

tator agreement testing. Based on Calder (1997), they propose to select the nodes

from one annotation and search for a node with the same terminal yield in the sec-

ond annotation. The process is driven by the selection of non-terminals from one of

the annotations and thus is asymmetric in nature. As a result, the full comparison

involves running the process in both directions, selecting from the first annotation

and comparing with the second as well as the other way around. We will return to

the issue of comparing complex annotations in chapters 3 and 4.

Indeed, interannotator agreement rates for syntactic annotation tend to be lower

than those reported for POS annotation, as given above. Brants (2000a) reports an

F-score agreement of 92.43%. However, Brants and Skut (1998) show that, after dis-

cussion, annotators are able to obtain identical nodes and labels 97.4% of the time.

And, as stated above, Voutilainen and Järvinen (1995) are able to obtain near 100%
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agreement after negotiations.11 Thus, we can see that checking interannotator agree-

ment can prevent errors from appearing in corpora, as well as help define annotation

standards. Given that annotation guidelines are the ultimate authority in a corpus

project (i.e. the benchmark by which “gold standard” corpora can be said to have

errors), it is vital that annotation standards are as complete and coherent as possible

and include a rich documentation of case law for difficult cases. As we will see in

sections 1.3.3 and 2.2.3, error detection research can also provide feedback to revising

annotation guidelines.

1.3.3 Error detection research

Nelson et al. (2002) report for the International Corpus of English (ICE) that

“[e]rror correction has continued on an ad hoc basis.” This kind of passive approach to

corpus correction, supplemented or not with other methods, is undoubtedly practiced

for every corpus: correct errors as they are found, no matter how they are found.

However, a body of recent research is trying to systematically find errors in corpora.

In this way, not only can more errors be found, but systemic causes of the errors (e.g.,

inadequate guidelines) can be rooted out and prevented in future work. A common

theme in this error detection work is that errors are items which do not fit a consistent

pattern; they deviate from the “norm” in some way. How consistency and deviation

are defined is what separates the methods from one another.

11As another example, Hinrichs et al. (2000) claim that they reduced incorrect/inconsistent error
rates in the Verbmobil corpus by deciding to remove predicate-argument structure information from
the annotation scheme for tree configurations; however, they provide no estimate of error rate or
interannotator agreement rate.
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For example, Eskin (2000) discusses how to use a sparse Markov transducer as a

method for what he calls anomaly detection. The notion of an anomaly essentially

refers to a rare local tag pattern, which is found by using a “mixture model,” a

statistical technique used to find outliers. The method flags 7055 anomalies for the

Penn Treebank, about 44% of which hand inspection shows to be errors.12 The low

precision of this method for detecting errors means that the repair process has to deal

with a high number of false positives from the detection stage. Furthermore, Eskin

notes that “if there are inconsistencies between annotators, the method would not

detect the errors because the errors would be manifested over a significant portion

of the corpus.” As we saw in section 1.2.2, though, inconsistencies are a prominent

issue to deal with in cleaning corpora.

Similar to Eskin (2000), Nakagawa and Matsumoto (2002) also search for excep-

tional elements. Their method uses support vector machines (SVMs). The SVMs

provide weights for each corpus position; the larger the weight, the more difficulties

the SVM had assigning a label to it. This gives a first set of potential error candi-

dates.13 The second step is to find similar examples in the corpus, based on a window

of two words and tags, as well as affix information in the focus word. More specifically,

they search for examples with the smallest distance metric from the heavily-weighted

word but having a different label. That is, they look for something which is the same

but not labeled as such. Of 1740 positions above a certain threshold in the WSJ,

they sampled the first 200 in the corpus and found 199 to be errors (precision =

12The probability for the 25% most likely errors increases to 69%.

13This, of course, ignores errors made by the SVM where it is highly confident in its label but is
nonetheless wrong.
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99.5%),14 and on two Japanese corpora, they obtained precision rates of 93.8% and

100%. Artificially introducing random changes to the tags led them to estimate a

recall of up to 18.5% (but no precision figures are given for the recall experiments).

Ule and Simov (2004) employ a similar idea to Eskin (2000) and Nakagawa and

Matsumoto (2002) for treebank error detection. Their idea is that by using a method

called Directed Treebank Refinement (DTR) (Ule, 2003), they can find unexpected

tree productions. To find the most unexpected tree node—what they call a focus

node (f)—for each iteration of the method, Ule and Simov (2004) use information

about the context c (i.e., the type of parent node) and the production type p (i.e., the

children). An event (c, f, p) which is unexpected, based on the χ2 metric, is deemed

likely to be an error. Each node is classified into one of four classes: error in f , error

in c, error in p, or no error, and errors are sorted into a list, with the more likely

errors appearing first. Ule and Simov are somewhat successful in finding errors in

a treebank of 580 sentences: of the first 27 error candidates in a hand-checked test

corpus, 11 were errors and five were the result of unclear guidelines. They also tested

their approach on a corpus into which they had introduced errors by switching node

labels, which allowed them to test not only precision but recall. Results varied by

corpus and by the number of errors introduced, but the best results were of 72%

precision and 72% recall. Admittedly, however, this does not test performance on

errors due to “misinterpreted larger structures.”

The methods we have discussed so far rely on the fact that errors correspond to

unexpected events, i.e., rare events. However, being rare does not necessarily mean

that something is incorrect, as shown in the well-known Zipf’s law (Manning and

14Since they took the first 200 items and did not randomly sample, we do not know the precision
of the next 1540 items.
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Schütze, 1999, ch. 1), where rare linguistic events are predicted to occur. In practice,

these rare but correct events can play a crucial role in NLP technology (Daelemans

et al., 1999). In addition to the methods mentioned so far, therefore, other error

detection methods need to be developed.

Taking the idea of identifying instances which probably should not happen and

making it stronger, Květǒn and Oliva (2002) employ the notion of an invalid bigram

to locate corpus positions with annotation errors. An invalid bigram is a POS-tag

sequence that cannot occur in a corpus, and the set of invalid bigrams is derived from

the set of possible bigrams occurring in a hand-cleaned sub-corpus, as well as from

linguistic intuition. Using this method, Květǒn and Oliva (2002) report finding 2661

errors in the NEGRA corpus (containing 396,309 tokens).15

Since errors in annotation can affect the performance of NLP systems, some re-

searchers have used the failure of systems to help locate errors. For example, Hirakawa

et al. (2000) and Müller and Ule (2002) are two approaches which use the POS anno-

tation as input for syntactic processing—a full syntactic analysis in the former and

a shallow topological field parse in the latter case—and single out those sentences

for which the syntactic processing does not provide the expected result. Thus, the

syntactic analysis is able to revise the POS-annotation.16 The disadvantage of such a

design for error detection is that these approaches require a sophisticated, language-

specific grammar and a robust syntactic processing regime so that the failure of an

analysis can confidently be attributed to an error in the input and not an error in the

grammar or the processor.

15Errors were found (semi-)automatically, but correction of the 2661 errors was assumedly done
manually.

16These techniques are related to the general field of correcting errors while POS-tagging (e.g.,
Elworthy, 1994; Yao et al., 2002).
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Similarly, Ma et al. (2001) detect errors as a part of their POS tagger. They use

modular neural networks; assuming n part of speech tags, and thus an n-way decision

in deciding a tag for a word, they break the n-way tagging problem (n = number of

tags) into approximately
(

n

2

)

two-class problems.17 Each module only deals with the

smaller problem of a choice between two tags; thus, the idea is that if a module does

not converge with an answer, the problem is probably not with the module, but might

instead be attributable to a problem in the data. The non-convergence of the modules

is usually caused by inconsistent data. Specifically, for the same given context in a

corpus, a word might have two different labels, where the context is defined in their

experiment by a window of two tags and the current word. They report that out of 97

pairs of contradictory learning data found by their method, 94 had an error, making

for a precision of 96.9%.

Independent of the underlying model, POS taggers can be used more generally

to find errors. As mentioned in section 1.2.1, van Halteren (2000) determines that

benchmark errors are a problem in the evaluation of taggers, by showing that variation

in annotation can indicate an annotation error. Using the idea that automatic taggers

are designed to detect “consistent behavior in order to replicate it,” places where

the automatic tagger and the original annotation disagree are deemed likely to be

inconsistencies in the original annotation.18 This idea is successful in locating a

number of potential problem areas, but van Halteren concludes that checking 6326

areas of disagreement only unearths 1296 errors, making error detection precision

17There are approximately and not exactly
(

n

2

)

two-class problems because some part-of-speech
decisions are more complex and require further decomposition into smaller problems.

18Abney et al. (1999) suggest a related idea based on using the importance weights that a boosting
algorithm employed for tagging assigns to training examples; but they do not explore and evaluate
such a method.
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rather low (20.49%). However, since one tagger’s disagreement with the corpus can

indicate a potential error, it could be even more informative to use the disagreements

of multiple taggers. Places in the corpus which are erroneous and inconsistent will be

difficult for most taggers to accurately assess and may result in disagreement between

taggers. Therefore, van Halteren (2000) proposes a two-phase method for detecting

errors: 1) use tagger disagreements to pinpoint contexts of inconsistency, such as

an -ed word being confused between an adjective and a past participle verb, and 2)

examine instances of those contexts in the full corpus. This method, however, is not

completely tested in van Halteren (2000); van Halteren et al. (2001), though, show

that a combination tagger can point to even more errors—44% of the “errors” for a

combination tagger on the WSJ were in actuality benchmark errors.

Summing up, the body of error detection research indicates that there are several

ways to rephrase the error detection question, revolving around finding the contexts

where labeling decisions are difficult to make. One way of viewing the task is to

detect a spot where something has gone wrong. Another view, as just exemplified

in van Halteren (2000), is to detect spots which are the “same” yet have different

annotations. That is, we can view error detection as a task of finding, not necessarily

where something has gone wrong, but where some element does not fit with the

evidence elsewhere in the corpus.
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1.4 The current proposal

This dissertation expands on the previous error detection research, especially van

Halteren (2000), by looking for labelings which are inconsistent with other parts of

the corpus. The essential idea is that identical strings with identical context but

found in different parts of the corpus should be annotated consistently.

In addition to this error detection, we also want to correct the errors we find. As

pointed out in various works (cf. Oliva, 2001; Blaheta, 2002), the task of correcting an-

notation can be viewed as consisting of two steps: i) detecting which corpus positions

are incorrectly annotated, and ii) finding the correct label for those positions.

The first step, detection, considers each corpus position and classifies the label

of that position as correct or incorrect. Given that this task involves each corpus

position, only a fully automatic detection method is feasible for a large corpus.

The second step, repair, considers those positions marked as errors and deter-

mines the correct tag. For POS annotation, we can take the performance of current

automatic taggers as baseline for the quality of the “gold-standard” annotation we

intend to correct. For English we can assume that repair needs to consider less than

3% of the number of corpus positions.19 This makes automation of this second step

less critical, as long as the error detection step has a high precision (which is relevant

since the repair step also needs to deal with false positives from detection).

19Typical reported error rates for taggers are around 3%. The assumption is that hand-corrected
corpora will not be worse than automatically-tagged corpora.

28



Chapters 2 through 4 address the first issue, detecting errors, deferring correction

to chapters 5 and 6. We focus on detecting errors automatically and with high

precision.20 To do so, we propose a method relying on internal corpus variation.

The starting point of our approach, that variation in annotation can indicate an

annotation error, essentially is also the starting point of the approach to annotation

error detection of van Halteren (2000), as described in section 1.3.3.

This notion is the basis of our error detection method, which we call variation

n-gram method. We describe the variation n-gram error detection method in detail

for various levels of annotation in the following chapters. In chapter 2, the variation

n-gram method is outlined for detecting errors in positional annotation, as exem-

plified by part-of-speech annotation. An efficient algorithm and results for several

corpora are given. The method can be extended to more complex forms of anno-

tation, and so the necessary extensions for detecting errors in structural annotation

are presented in chapter 3, using syntactic annotation as the example. The method

has to be broken down into several runs in order to efficiently calculate recurring

strings of all relevant lengths. Results which validate the usefulness of the method

are also given, as well as the results of a related approach based on inconsistent local

trees. The approach to structural annotation in chapter 3 assumes contiguous units

of data and so in chapter 4, the method is extended to cover annotation containing

discontinuous elements, focusing on treebanks with discontinuous constituents. The

linguistic motivation behind the method for discontinuous constituents is virtually

20Recall is less relevant in our context since eliminating any substantial number of errors from a
“gold-standard” is a worthwhile enterprise.
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the same as with continuous constituents, but several techniques are needed to make

an efficient extension, all of which are elucidated in chapter 4. Again, the practical

benefit of using such a method is there displayed.

Although hand-correction of a corpus should be feasible once errors have been

accurately detected by the variation n-gram method, automatic and semi-automatic

methods can speed up the process and ensure a new level of consistency in the corpus.

In chapters 5 and 6, we turn to applying various classification techniques to the task of

correcting a corpus, based on the results of the variation n-gram detection method.

For this work, we focus on part-of-speech annotation. Using various off-the-shelf

tagging techniques—Hidden Markov Models, memory-based learning, and decision-

tree techniques—chapter 5 attempts to take automatic correction (with classifiers)

as far as possible. Although we discover new methods and insights into the general

process of part-of-speech tagging, lingering problems remain for the task of automatic

correction of corpus annotation errors. Thus, in chapter 6, we integrate automatic

correction methods into a broader picture of error correction. We automatically

classify errors into groups with differing levels of confidence: some errors can be

automatically corrected with a high degree of confidence, while others need human

intervention.
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CHAPTER 2

POS ANNOTATION

2.1 Introduction

This chapter will introduce a general error detection method for corpus annotation,

the so-called variation n-gram method, by showing how it can be applied to part-of-

speech (POS) annotation. Although, following Dickinson and Meurers (2003a), it

is here illustrated for POS annotation, it is generally applicable for any positional

annotation—i.e., annotation where each position has a label—since it is simply based

on inconsistencies in the annotation of recurring strings. The method presented in this

chapter assumes a one-to-one relationship between a token and an annotation label,

which is true for POS annotation. However, the method can be used as long as a one-

to-one relationship between the corpus data and the annotation can be established.

Chapters 3 and 4 will describe extensions to the method, accounting for annotation

which does not have such an immediate one-to-one mapping.

The underlying idea of the method presented in this chapter is that corpus anno-

tation should be consistent across a corpus. One way to determine if the annotation

is consistent is to find two corpus instances of the “same element” (defined more

precisely below) and to see if those same elements have the same annotation. If they

do not have the same annotation, then it is likely an error. For example, if a word
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appears in the middle of ten other words, it should probably have the same part-

of-speech tag as when the same word again appears in the middle of the same ten

words.

The usefulness of the variation n-gram error detection method can be seen in that

it automatically detects errors in corpus annotation which remain despite human

post-editing and are usually caused by it. Furthermore, the method is independent of

the language and tagset of the corpus and requires no additional language resources

such as lexica.

As we will see in section 2.2, the method detects variation in the POS annotation

of a corpus by searching for n-grams21 which occur more than once in the corpus and

include at least one difference in their annotation. We discuss how all such variation

n-grams of a corpus can be obtained and show that together with some heuristics they

are highly accurate predictors of annotation errors. We illustrate the applicability and

effectiveness of this method by reporting the results of applying it to the Wall Street

Journal (WSJ) corpus as part of the Penn Treebank 3 release, which was tagged

using the PARTS tagger and manually corrected afterwards (Marcus et al., 1993). In

section 2.3, we discuss the applicability of the variation n-gram method on a larger

range of corpora. Section 2.4 then presents two related ideas which attempt to detect

different kinds of inconsistencies.

21An n-gram is a stretch of n tokens (or words) in the corpus.
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2.2 A method for detecting errors

2.2.1 Using the variation in a corpus

For each word that occurs in a corpus, there is a lexically determined set of tags

that can in principle be assigned to this word. The tagging process reduces this set of

lexically possible tags to the correct tag for a specific corpus occurrence. A particular

word occurring more than once in a corpus can thus be assigned different tags in a

corpus. We will refer to this as variation. For example, in (3), the word decided varies

between a past tense verb (VBD) and a past participle (VBN) in the WSJ.

(3) a. And the city decided/VBD to treat its guests more like royalty or rock stars

than factory owners .

b. I ’ve decided/VBN for personal reasons to take early retirement .

Variation in corpus annotation is caused by one of two reasons: i) ambiguity :

there is a word (“type”) with multiple lexically possible tags and different corpus

occurrences of that word (“tokens”) happen to realize the different options,22 as was

seen in (3), or ii) error : the tagging of a word is inconsistent across comparable

occurrences, as shown in (4). We can therefore locate annotation errors by zooming

in on the variation exhibited by a corpus, provided we have a way to decide whether

a particular variation is an ambiguity or an error—but how can this be done?

(4) a. Mr. Suominen may have decided/VBD to cut Finland ’s losses once and for

all .

b. Many farmers, too removed to glean psyllium ’s new sparkle in the West ,
have decided/VBN to plant mustard

22For example, the word can is ambiguous between being an auxiliary, a main verb, or a noun
and thus there is variation in the way can would be tagged in I can play the piano, I can tuna for a
living, and Pass me a can of beer, please.
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Variation n-grams

The key to answering the question lies in a classification of contexts: the more similar

the context of a variation, the more likely it is for the variation to be an error. But

we need to make concrete what kinds of properties the context consists of and what

count as similar contexts. In this chapter, we focus on contexts composed of words,23

and we require identity of the context, not just similarity. We will use the term

variation n-gram for an n-gram (of words) in a corpus that contains a word that is

annotated differently in another occurrence of the same n-gram in the corpus. The

word exhibiting the variation is referred to as the variation nucleus.

For example, in the WSJ, the string in (5) is a variation 12-gram since off is a

variation nucleus that in one corpus occurrence of this string is tagged as preposition

(IN), while in another it is tagged as particle (RP).

(5) to ward off a hostile takeover attempt by two European shipping concerns

Note that the variation 12-gram in (5) contains two variation 11-grams, which one

obtains by eliminating either the first or the last word, as shown in (6).

(6) a. to ward off a hostile takeover attempt by two European shipping

b. ward off a hostile takeover attempt by two European shipping concerns

Algorithm

To compute all variation n-grams of a corpus, we make use of the just mentioned

fact that a variation n-gram must contain a variation (n − 1)-gram to obtain an

algorithm efficient enough to handle large corpora. The algorithm, which essentially

is an instance of the a priori algorithm used in information extraction (Agrawal and

23Other options allowing for application to more corpus instances would be to use contexts com-
posed of POS tags or some other syntactic or morphological properties. Such options are explored
for syntactic and discontinuous syntactic annotation in chapters 3 and 4.
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Srikant, 1994), takes a POS-annotated corpus and outputs a listing of the variation

n-grams, from n = 1 to the longest n for which there is a variation n-gram in the

corpus. It proceeds as follows:

1. Calculate the set of variation unigrams in the corpus and store the variation

unigrams and their corpus positions.24

2. Based on the corpus positions of the variation n-grams last stored, extend the

n-grams to either side (unless the corpus ends there).25 For each resulting

(n + 1)-gram, check whether it has another instance in the corpus and if there

is variation in the way the different occurrences of the (n +1)-gram are tagged.

Store all variation (n + 1)-grams and their corpus positions.

3. Repeat step 2 until we reach an n for which no variation n-grams are in the

corpus.

Running the variation n-gram algorithm on the WSJ corpus produced variation

n-grams up to length 224.26 The table in figure 2.1 reports two results for each n:

the first is the number of variation n-grams that were detected and the second is the

number of variation nuclei that are contained in those n-grams. For example, the

second entry reports that 17,384 variation bigrams were found, and they contained

18,499 variation nuclei, i.e., for some of the bigrams there was a tag variation for both

24In chapter 3, we will see how the definition of a unigram can be generalized for syntactic
annotation.

25In chapter 4, we will see how the notion of extending an n-gram can be generalized for discon-
tinuities to include any material which is interleaved with the n-gram.

26Irrespective of variation, this 224-gram is the longest string which appears multiple times at all
in the WSJ corpus. This fact was calculated using the a priori algorithm without the condition on
variation, but note that for extremely large corpora, the suffix array method presented in Yamamoto
and Church (2001) would likely be more efficient for such a calculation.
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1. 7033 7033

2. 17384 18499

3. 12199 13002

4. 6576 7181

5. 4097 4646

6. 2934 3478

7. 2333 2870

8. 2027 2583

9. 1825 2405

10. 1678 2296

11. 1579 2249

12. 1516 2241

13. 1475 2260

14. 1456 2305

15. 1429 2333

16. 1413 2378

17. 1395 2431

18. 1381 2484

19. 1376 2547

20. 1376 2615

21. 1367 2671

22. 1355 2721

23. 1343 2764

24. 1330 2808

25. 1318 2846

26. 1304 2877

27. 1291 2911

28. 1283 2950

29. 1273 2987

30. 1264 3028

31. 1255 3072

32. 1243 3116

33. 1234 3164

34. 1220 3203

35. 1211 3241

36. 1201 3275

37. 1188 3305

38. 1177 3337

39. 1169 3371

40. 1158 3397

41. 1147 3419

42. 1134 3432

43. 1124 3444

44. 1114 3454

45. 1106 3468

46. 1097 3481

47. 1087 3495

48. 1074 3503

49. 1059 3507

50. 1045 3510

51. 1030 3510

52. 1018 3521

53. 1004 3529

54. 989 3538

55. 975 3548

56. 961 3556

57. 946 3558

58. 932 3558

59. 918 3557

60. 904 3556

61. 889 3550

62. 873 3545

63. 857 3536

64. 841 3519

65. 825 3497

66. 809 3473

67. 793 3449

68. 777 3426

69. 762 3405

70. 747 3376

71. 733 3348

72. 720 3315

73. 708 3283

74. 696 3250

75. 683 3211

76. 670 3171

77. 656 3134

78. 642 3093

79. 629 3052

80. 616 3011

81. 603 2966

82. 594 2928

83. 585 2890

84. 577 2853

85. 568 2814

86. 558 2765

87. 547 2714

88. 536 2661

89. 526 2617

90. 517 2573

91. 505 2516

92. 493 2457

93. 481 2398

94. 469 2339

95. 459 2298

96. 449 2259

97. 439 2218

98. 430 2185

99. 421 2150

100. 412 2114

101. 405 2084

102. 399 2066

103. 393 2048

104. 388 2032

105. 383 2017

106. 378 2002

107. 373 1987

108. 368 1969

109. 363 1948

110. 358 1924

111. 353 1898

112. 348 1872

113. 343 1846

114. 338 1820

115. 333 1794

116. 328 1768

117. 323 1742

118. 318 1716

119. 313 1689

120. 308 1661

121. 303 1632

122. 298 1602

123. 293 1571

124. 288 1540

125. 283 1509

126. 278 1478

127. 273 1446

128. 268 1413

129. 263 1379

130. 258 1345

131. 253 1311

132. 248 1277

133. 243 1243

134. 237 1205

135. 231 1167

136. 225 1134

137. 219 1100

138. 213 1066

139. 207 1032

140. 202 1001

141. 197 970

142. 193 948

143. 189 926

144. 185 904

145. 181 882

146. 176 853

147. 171 828

148. 167 809

149. 163 790

150. 159 770

151. 155 750

152. 151 729

153. 147 708

154. 143 687

155. 139 666

156. 135 645

157. 131 623

158. 127 600

159. 123 575

160. 119 550

161. 115 525

162. 111 500

163. 108 485

164. 105 470

165. 102 455

166. 99 440

167. 96 425

168. 93 410

169. 90 395

170. 87 380

171. 84 365

172. 81 350

173. 78 335

174. 75 320

175. 72 305

176. 69 290

177. 66 274

178. 63 258

179. 60 242

180. 57 226

181. 54 210

182. 51 194

183. 48 178

184. 45 162

185. 42 146

186. 40 137

187. 38 128

188. 37 126

189. 36 124

190. 35 122

191. 34 120

192. 33 118

193. 32 116

194. 31 114

195. 30 112

196. 29 110

197. 28 108

198. 27 106

199. 26 104

200. 25 102

201. 24 100

202. 23 98

203. 22 96

204. 21 94

205. 20 92

206. 19 90

207. 18 88

208. 17 86

209. 16 84

210. 15 82

211. 14 80

212. 13 78

213. 12 76

214. 11 74

215. 10 72

216. 9 68

217. 8 64

218. 7 59

219. 6 53

220. 5 46

221. 4 38

222. 3 29

223. 2 20

224. 1 10

Figure 2.1: Variation n-grams and nuclei in the WSJ
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Figure 2.2: Variation n-grams and nuclei in the WSJ for n up to 15

of the words. At the end of the table is the single variation 224-gram, containing 10

different variation nuclei, i.e., spots where the annotation of the (two) occurrences of

the 224-gram differ.27

The table reports the level of variation in the WSJ across identical contexts of

different sizes, graphically seen in figures 2.2 and 2.3. In the next section we turn to

the issue of detecting those occurrences of a variation n-gram for which the variation

nucleus is an annotation error.

27The table does not report how often a variation n-gram occurs in a corpus since such a count
is not meaningful in our context: The variation unigram the, for instance, appears 56,317 times in
the WSJ, but 56,300 of these are correctly annotated as determiner (DT).
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Figure 2.3: Variation n-grams and nuclei in the WSJ for n above 15

2.2.2 Heuristics for classifying variation

Once the variation n-grams for a corpus have been computed, heuristics can be

employed to classify the variations into errors and ambiguities. These heuristics

capture typical regularities of language, but they are only heuristics. They do not

capture language facts in the way that a full grammatical analysis would, but we

want to see how effective simple, linguistically-informed heuristics can be. The first

heuristic encodes the basic fact that the tag assignment for a word is dependent

on the context of that word. The second takes into account that natural languages

favor the use of local dependencies over non-local ones. Both of these heuristics are

independent of a specific corpus, tagset, or language.
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Variation nuclei in long n-grams are errors The first heuristic is based on the

insight that a variation is more likely to be an error than a true ambiguity if it occurs

within a long stretch of otherwise identical material. In other words, the longer the

variation n-gram, the more likely that the variation is an error.

For example, lending occurs tagged as adjective (JJ) and as common noun (NN)

within occurrences of the same 184-gram in the corpus, as shown in figure 2.4. It

is very unlikely that the context (109 identical words to the left, 74 to the right)

supports an ambiguity, and the adjective tag does indeed turn out to be an error.

Similarly, the already mentioned 224-gram, shown in figure 2.5, includes 10 different

variation nuclei, all of which turn out to be erroneous variation.

% four months ; 8 7/16 % to 8 5/16 % five months ; 8 7/16 % to 8 5/16 % six months . LONDON
INTERBANK OFFERED RATES ( LIBOR ) : 8 11/16 % one month ; 8 5/8 % three months ; 8
7/16 % six months ; 8 3/8 % one year . The average of interbank offered rates for dollar deposits
in the London market based on quotations at five major banks . FOREIGN PRIME RATES :
Canada 13.50 % ; Germany 9 % ; Japan 4.875 % ; Switzerland 8.50 % ; Britain 15 % . These rate
indications are n’t directly comparable ; lending practices vary widely by location . TREASURY
BILLS : Results of the Monday , October 23 , 1989 , auction of short-term U.S. government bills
, sold at a discount from face value in units of $ 10,000 to $ 1 million : 7.52 % 13 weeks ; 7.50 %
26 weeks . FEDERAL HOME LOAN MORTGAGE CORP . ( Freddie Mac ) : Posted yields on
30-year mortgage commitments for delivery within 30

Figure 2.4: A 184-gram which appears twice in the WSJ with one variation
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. The Wall Street Journal “ American Way of Buying ” Survey consists of two separate , door-to-
door nationwide polls conducted for the Journal by Peter D. Hart Research Associates and the Roper
Organization . The two surveys , which asked different questions , were conducted using national
random probability samples . The poll conducted by Peter D. Hart Research Associates interviewed
2,064 adults age 18 and older from June 15 to June 30 , 1989 . The poll conducted by the Roper
Organization interviewed 2,002 adults age 18 and older from July 7 to July 15 , 1989 . Responses
were weighted on the basis of age and gender to conform with U.S. Census data . For each poll ,
the odds are 19 out of 20 that if pollsters had sought to survey every household in the U.S. using
the same questionnaire , the findings would differ from these poll results by no more than 2 1/2
percentage points in either direction . The margin of error for subgroups – for example , married
women with children at home – would be larger . In addition , in any survey , there is always the
chance that other factors such as question wording could introduce errors into the findings . ( See
related story : “ The American Way of Buying :

Figure 2.5: A 224-gram which appears twice in the WSJ with ten variations

While we have based this heuristic solely on the length of the identical context,

another factor one could take into account for determining relevant contexts are struc-

tural boundaries. A variation nucleus that occurs within a complete, otherwise iden-

tical sentence is very likely to be an error.28

For example, the 25-gram in (7) is a complete sentence that appears 14 times, four

times with centennial tagged as JJ and ten times with centennial marked as NN, with

the latter being correct according to the description in the tagging guide (Santorini,

1990). The fact that variation exists for centennial for n-grams up to length 32 (for

three instances) seems to be irrelevant.

(7) During its centennial year , The Wall Street Journal will report events of the
past century that stand as milestones of American business history .

28Since sentence segmentation information is often available for POS-tagged corpora, we focus
on those structural domains here. For treebanks, other constituent structure domains could also
be used for the purpose of determining the size of the context of a variation that should be taken
into account for distinguishing errors from ambiguities. In chapter 4, we will experiment with using
sentence and dialog turn domains, partly for reasons of efficiency.
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In fact, for the JJ/NN distinction, all that really seems to be relevant are the

preceding and following words. We will exploit this later on in obtaining more robust

results (see section 2.2.3).

Distrust the fringe Turning the spotlight from the n-gram and its properties to

the variation nucleus contained in it, an important property determining the likeli-

hood of a variation to be an error is whether the variation nucleus appears at the

fringe of the variation n-gram, i.e., at the beginning or the end of the context which is

identical over all occurrences. This is due to the fact that morphological and syntactic

properties are generally governed locally.

For example, joined occurs as past tense verb (VBD) and as past participle (VBN)

within a variation 37-gram, as shown in example (8). It is the first word in the

variation 37-gram and in one of the occurrences it is preceded by has (8b) and in

another it is not (8a). Despite the relatively long context of 36 words to the right, the

variation thus is a genuine ambiguity, enabled by the location of the variation nucleus

at the left fringe of the variation n-gram. By taking only non-fringe variations as

indicative of an error, we eliminate examples like (8) from consideration.

(8) a. John P. Karalis . . .

b. John P. Karalis has . . .

joined the Phoenix , Ariz. , law firm of Brown & Bain . Mr. Karalis , 51 , will
specialize in corporate law and international law at the 110-lawyer firm . Before
joining Apple in 1986 ,

2.2.3 Results for the WSJ

There are 1,289,201 tokens in the WSJ, corresponding to 51,457 word types.

Nearly half the word types—23,497 words—appear only once in the corpus and so

cannot possibly show up in our method as potentially erroneous. But these account
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for only 1.8% of the tokens. Even though this is a small percentage of the corpus,

we would still like to examine them for correctness of annotation, in order to better

approach the detection of all errors. The variation n-gram method offers two possi-

bilities of extension to detect errors in the annotation of words appearing once in a

corpus. 1) One can generalize the notion of a nucleus to include POS information

and thus include single-occurrence words in a class. 2) Hand-inspection of the errors

detected by the method can point to what tags and kinds of words (e.g. hyphenated

words) need more attention. In the style of Blaheta (2002) and Oliva (2001), patterns

can be specified to search for throughout the whole corpus.

Focusing on the words which occur multiple times (98.2% of the tokens), we want

to know which ones are potentially problematic. From figure 2.1, we can see that

there are 7033 variation unigrams; this number corresponds to 13.7% of the word

types and sets an upper bound on the number of word types we can hope to correct.

These 7033 unigram types correspond to 711,994 word tokens, or 55.2% of the corpus.

Thus, we find that a first pass of the unigrams restricts our attention to about half of

the corpus. This is not to say that there are no errors in the 45.8% of the corpus which

does not contain variation unigrams, but that we are more likely to find systematic

errors in the remaining portion.

With that in mind, we can turn to the main results for the WSJ. We first examined

only n-grams of length six or higher in order to evaluate the efficiency of the trust

long contexts heuristic. The variation n-gram algorithm found 2495 distinct variation

nuclei29 of n-grams with 6 ≤ n ≤ 224, where by distinct we mean that each corpus

29These 2495 distinct nuclei correspond to 559 distinct words, or types.
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position is only taken into account for the longest variation n-gram it occurs in.30

The number of distinct variation n-grams and nuclei for each n can be seen in figures

2.6 and 2.7. Note that for the first 15 values (figure 2.6), we get a curve very similar

to the variation n-grams in figure 2.1. However, distinct n-grams stop only at the

longest length, and so the variation n-grams thin out as n gets larger, and what we

see in figure 2.6 is something of an asymptotic curve, but with much more noise.
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Figure 2.6: Distinct variation n-grams and nuclei in the WSJ for n up to 15

30This eliminates the effect that each variation n-gram instance also is an instance of a variation
(n-1)-gram, a property exemplified by (5) and the discussion below it.
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Figure 2.7: Distinct variation n-grams and nuclei in the WSJ for n above 15

To evaluate the precision of the variation n-gram algorithm and the heuristics

for error detection, we need to know which of the variation nuclei detected actually

include tag assignments that are real errors. We thus inspected the tags assigned to

the 2495 variation nuclei that were detected by the algorithm and marked for each

nucleus whether the variation was an error or an ambiguity.31 We found that 2436, or

97.64%, of those variation nuclei (types) are errors, i.e., the variation in the tagging

of those words as part of the particular n-gram was incorrect. To get an idea for

31Generally, the context provided by the variation n-gram was sufficient to determine which tag
is the correct one for the variation nucleus. In some cases we also considered the wider context of a
particular instance of a variation nucleus to verify which tag is correct for that instance. In theory,
some of the tagging options for a variation nucleus could be ambiguities, whereas others would be
errors; in practice this did not occur for this data set.
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how many tokens in the corpus correspond to the variation nuclei that our method

correctly flagged as being wrongly tagged, we hand-corrected the mistagged instances

of those words. This resulted in a total of 4417 tag corrections.

For the heuristic of trusting long contexts, an n-gram length of six turns out to

be a good cut-off point for the WSJ. This becomes apparent when one takes a look

at where the 59 ambiguous variation nuclei arise: 32 of them are variation nuclei of

6-grams, 10 are part of 7-grams, 4 are part of 8-grams, and the remaining 13 occur

in longer n-grams.

The second heuristic, distrust the fringe, however, turns out to be a stronger

heuristic. 57 of the 59 ambiguous variation nuclei that were found are fringe elements,

i.e., occur as the first or last element of the variation n-gram. The two exceptions are

and use some of the proceeds to and buy and sell big blocks of, where the variation

nuclei use and sell are ambiguous between base form verb (VB) and third-person

singular present tense verb (VBP) but do not occur at the fringe. As an interesting

aside, more than half of the true ambiguities (31 of 59) occurred between past tense

verb (VBD) and past participle (VBN) and are the first word in their n-gram, as

exemplified in (8). To completely evaluate the fringe in this experiment, one must

also take into account the fact that there were 156 total fringe elements, of which

99 were actually errors. So, at least above the 5-grams, it may not be necessary to

distrust the fringe, depending on if one is more concerned about precision or recall.

Expecting the observed drop in precision to continue, however, the heuristic seems to

be a a practical filter for generally determining if the n-gram contains an ambiguity

or an error.
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Indeed, we further tested the cut-off point for long n-grams against the heuris-

tic of distrusting the fringe and in this way increased our recall. It is possible that

in a language like English, simply ignoring fringe elements is enough to obtain reli-

able results. Concretely, we took all 7141 distinct non-fringe variation n-grams (i.e.

types)—i.e. 3 ≤ n ≤ 224—sampled 125 of them, and marked for each one whether

it was erroneous variation (i.e. there was no need for variation), true ambiguity, or

whether it was too difficult to decide for sure.32 Of the 125 variations, 116 were

erroneous variation, with 4 being true ambiguities, and 5 being cases of uncertainty,

giving an estimated precision of at least 92.8%. The 95% confidence interval for the

point estimate of .928 is (.8827, .9733), i.e., the number of real errors detected in the

7141 cases is estimated to be between 6303 and 6950.33 Note that these are counts

of distinct variation nuclei (i.e., recurring strings, or types), but we can reasonably

assume that the token counts will be similar, if not larger.

If we take the estimated error rate of 3% in the WSJ as accurate, this means

that there are about 38,767 errors to find. Our method locates approximately 6626

errors, which means that our recall is approximately 17%. While this leaves many

errors yet to be found, to our knowledge it is significantly more than previously

found systematically in the WSJ. Furthermore, correcting these errors would lead to

a corpus error rate of 2.5%, a significant improvement. We can see, then, that solely

32This is essentially the same evaluation approach we will use in future chapters, as hand-checking
all results is not generally feasible.

33The 95% confidence interval was calculated using the standard formula of p ± 1.96
√

p(1−p)
n

,

where p is the point estimate and n the sample size.
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relying on the heuristic “distrust the fringe” gives high accuracy while boosting the

recall of the method. And with such high accuracy, hand-correction of the errors is

eminently practical.

Kaljurand (2004) critiques the variation n-gram method by pointing out that the

nature of the inconsistency is not taken into account, i.e., the frequency of distribution

of tag variations. He proposes using a skew value to measure how skewed the frequency

distribution is. High skew values are supposed to indicate a preference for one tag;

low skew values have approximately equivalent frequencies for tags. Although using

this kind of information could be useful, it is not clear whether we can reliably gain

any information from this skew value, and Kaljurand (2004) does not test it. For

example, although executive varies between JJ and NN, often incorrectly, with 466

NN instances and 285 JJ instances, made has about the same ratio (430 VBN to 290

VBD), and this is a desired ambiguity. A method such as one using this skew value

or variance might be useful for ranking errors, but the variation n-gram method is

already quite precise, and no such ranking seems necessary.34

Problematic cases When we speak of ambiguity, it is clear that we are speaking

of cases of where there is ambiguity within an n-gram, but for each instance the part

of speech can be determined. At other times, even within the context of the whole

corpus, the word’s part of speech is not clearly limited to one tag. A case where

the word is truly ambiguous between two or more tags can be seen in the end of a

28-gram in (9), where Rally is shouted three times (in one instance, the next 2 rally ’s

are lowercase, while in the other they are uppercase, so they do not appear in the

28-gram).

34We will employ a variant of this skew value, however, for ranking error corrections; see section 6.4.
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(9) ... Then, nine minutes later, Wall Street suddenly rebounded to a gain on the
day . “ Rally

The shouting of this single word could either mean something akin to “This is a

rally!” or “Let’s rally!”, corresponding to noun and verb uses, respectively. Oddly,

such indeterminate cases were very rare, and it is noteworthy that, although the Penn

Treebank project provides a vertical slash for such cases where two tags are possible

(Santorini, 1990), what we find is one annotation of common noun (NN) and one of

base form verb (VB).

Of the 2436 erroneous variation nuclei we discussed above, 140 of them deserve

special attention here in that it was clear that the variation was incorrect, but it

was not possible to decide based on the tagging guide (Santorini, 1990) which tag

would be the right one to assign. Even without knowing the correct tag, it is clear

that the context demands a uniform tag assignment. Most of those cases concern the

distinction between singular proper noun (NNP) and plural proper noun (NNPS). For

example, in the bigram Salomon Brothers, Brothers is tagged 42 times as NNP and

30 times as NNPS; similarly, Motors in General Motors is an NNP 35 times and an

NNPS 51 times. A clearer case is the trigram Salomon Brothers Inc, where Brothers

is no longer a word that could be affecting subject-verb agreement, yet is NNP 27

times and NNPS 22 times.

It is possible to design and document a tagset in a way that allows for 100%

inter-judge agreement for POS-annotation (Voutilainen and Järvinen, 1995), but this

requires clearly documenting difficult cases and eliminating structurally unjustified

POS-ambiguity, e.g., certain types of noun-adjective homographs and the distinction
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between proper and common nouns.35 The results of the variation n-gram algorithm

support the notion that such highly error-prone distinctions exist in the Penn Tree-

bank tagset. Whether or not these distinctions should be kept is another issue, and

further research will determine what internal and external criteria constitute a good

tagset—see, e.g., Przepiórkowski and Woliński (2003).36 In the section 2.3, we discuss

in more detail the tagset’s influence on the n-gram method.

2.3 Other corpora

To gauge the generality of the variation n-gram error detection method, we must

examine other corpora with different properties. The method is not specifically de-

signed for a particular language, tagset, or corpus, but certain issues arise when

applying the method and the heuristics to other corpora, due to the kind of language

and the tagset used in the corpus.

The utility of a method using variation n-grams relies on a particular word ap-

pearing several times in a corpus with different annotations. It thus works best for

large corpora and hand-annotated or hand-corrected corpora, or corpora involving

other sources of inconsistency. As discussed in section 1.2.1, interannotator bias cre-

ates inconsistencies which a completely automatically-tagged corpus does not have

(Ratnaparkhi, 1996). And Baker (1997) makes the point that a human post-editor

also decreases the internal consistency of the tagged data since he will spot a mistake

made by an automatic tagger for some but not all of its occurrences. As a result, our

35Current research by Sampson and Babarczy (2003) is trying to determine if previously-defined
tagsets such as the one for the SUSANNE corpus are equally capable.

36Note that our heuristics would work best on a tagset like the one proposed in Przepiórkowski and
Woliński (2003), which is based purely on morphological and syntactic properties, since semantic
and pragmatic properties are not directly visible in word forms and word order.
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variation n-gram approach is well suited for the gold-standard annotations generally

resulting from a combination of automatic annotation and manual post-editing, as

the WSJ was. The other corpora we tested the method on, as discussed in sections

2.3.1 (BNC-sampler) 2.3.2 (SUSANNE), and 2.3.3 (MULTEXT-East), all contain

some degree of manual tagging. Figure 2.8 gives a quick comparison of some of the

properties relevant for the variation n-gram method, including the total size of the

corpus (number of tokens), the largest varying n, and the number of variation nuclei.

Corpus Size Largest n Nuclei
WSJ 1,289,201 224 7033
BNC-sampler 2,427,451 692 8710
SUSANNE 156,622 9 1501
MULTEXT-East 118,424 127 1048

Figure 2.8: A comparison of the different corpora examined

2.3.1 BNC-sampler

The British National Corpus sampler, or BNC-sampler (Leech, 1997), provides

an ideal scenario for testing the n-gram method on a larger corpus, in this case one

roughly twice as large as the WSJ (see Figure 2.8), and one which contains spoken

data. With a large corpus, more and longer n-grams are expected, but the corpus is

reputed to be much better-tagged than the Penn Treebank corpora, and spoken data

changes the nature of the context. As previously cited (Leech, 1997), 0.3% of the

BNC-sampler is estimated to be erroneous, while the estimates for the part-of-speech
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annotation in the Penn treebank are closer to 3% (Marcus et al., 1993, p. 19). Thus,

testing the method on the BNC-sampler will give a clearer indication of how general

the method is.

Running the variation n-gram algorithm on the BNC-sampler found 8710 variation

unigrams and variation n-grams up to length 692 (one 692-gram with 4 variation

nuclei), but for the 6-grams and above, there were only 872 distinct variation nuclei

(cf. 2495 in the WSJ), many of which (385) were on the fringe. With 34,312 distinct

variation nuclei (8527 non-fringe nuclei) between the 3 and the 692-grams, however,

there still is much potential for detecting a large number of errors.37

Of the 8527 non-fringe distinct variation nuclei (types), we sampled 125 in order

to obtain an estimate of precision. As with the WSJ evaluation, we marked for each

one whether it was erroneous variation (i.e. there was no need for variation), true

ambiguity, or whether it was too difficult to decide for sure. With the BNC-Sampler,

there were two reasons we could not decide: 1) the guidelines were not sufficiently

clear, as was often the case with indecisions in the WSJ, and 2) the text—much of it

spoken dialogue with restarts and unclear phrases—made it too difficult to determine

what the speaker was trying to say and thus what tag is appropriate. The latter was

much more prevalent, but we will conflate the two into a single category, designated

uncertain.

37Compare the 16,319 distinct variation nuclei (7141 non-fringe) between the 3 and 224-grams in
the WSJ corpus.
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One further note is in order. When checking the results by hand, sometimes it

was unclear if the variation was an error or an ambiguity, but one was deemed (much)

more likely. In the tables below, we report the results of grouping these cases with

the uncertain category (Uncertain) vs. grouping them with the appropriate error or

ambiguity (Error/Ambiguity) category.

Of the 125 samples, then, we can see in figure 2.9 that at least 51 are errors

(40.80%) and most likely 65 (52%) are errors. The 95% confidence interval for the

point estimate of .408 is (.3218, .4942), meaning that we are 95% confident that there

are between 2744 and 4213 errors; likewise, for the point estimate of .52, we obtain

a 95% confidence interval of (.4324, .6076), corresponding to between 3687 and 5180

errors. While the number of errors is useful for correction and the precision is decent

(compare the precision rates of 44% (Eskin, 2000) and 20% (van Halteren, 2000)),

these precision figures are considerably lower than the WSJ results, and so we now

turn to some of the causes of this.

Error Ambiguity Uncertain Total Precision
Uncertain 51 51 23 125 40.80%
Error/Ambiguity 65 55 5 125 52.00%

Figure 2.9: Results of the method on the BNC-sampler corpus

Spoken language issues As mentioned, one difference between the BNC and the

WSJ is that the BNC includes spoken language. The BNC-sampler, in fact, is com-

prised of about half spoken language. Aside from false starts and sudden endings
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(which potentially cause odd sequences of words to appear next to each other), one

noticeable feature of spoken language in the BNC is the presence of pauses. These

pauses indicate that the words preceding and following them may or may not be

syntactically related. In other words, they mask the context, in that we really do

not know what the surrounding context is. We can see an example of this in (10),

where to varies between II (general preposition) and TO (infinitive marker).38 What

appears to be variation in the same context really does not share a context at all.

(10) a. down from London <pause> to <pause> just within ten miles of Bury St
Edmunds .

b. he just does n’t seem to have anything <pause> to <pause> volunteer

Removing pauses which are on the fringe and next to a nucleus gives us the results

in figure 2.10, which shows us that the rate of finding errors slightly goes up: 41.52%

(49/118) on the low end and 52.54% (62/118) on the high end. Removing pauses

from the overall set of 8527 distinct variation nuclei gives 8177 remaining nuclei—i.e.,

350 nuclei have fringe pauses next to them.39

Error Ambiguity Uncertain Total Precision
Uncertain 49 48 21 118 41.52%
Error/Ambiguity 62 51 5 118 52.54%

Figure 2.10: Results on the BNC-sampler after removing examples where only a
<pause> makes them non-fringe

38We will here notate an n-gram by putting it in bold and its nucleus by underlining it and shading
it gray.

39In order to better assess the impact of these pauses on the method in the future, one could
divide the BNC-sampler into the written and spoken halves and run the variation n-gram code on
the separate halves individually.
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Tagset considerations A bigger factor in the accuracy of the method turns out

to be the tagset. Most problematic for our method are the variations between two

different verbal tags. We can see this illustrated in example (11), where (11a) gets

the tag VV0 (base form of lexical verb) and (11b) gets the tag VVI (infinitive). These

tags are clearly correct, as the VV0 instance is finite and the VVI one is not, but the

context is not sufficiently large enough to determine the differences in use. In this

case, one more word to the left would have clearly distinguished their uses (i.e. did

requires an infinitive to follow). Similar problems exist between other verbal pairings,

notably between VVD (past tense of lexical verb) and VVN (past participle of lexical

verb).40

(11) a. Really ni , I mean you get in there and you feel ...

b. What time did you get in from the shopping ?

Removing from consideration examples with verbal variation significantly increases

the accuracy of the method, as shown in figure 2.11. There is 53.49% precision on the

low end and 65.12% precision on the high end. Removing these examples from the

full set of 8527 n-grams results in 5340 remaining distinct variation n-grams. Thus,

with a 95% confidence interval of (.4295, .6403) for the point estimate of .5349, we are

95% confident that there are between 2293 and 3419 errors. For the point estimate of

.6512, we obtain a 95% confidence interval of (.5524, .7519), corresponding to between

2939 and 4015 errors.

Recall It has been reported (Leech, 1997) that the BNC-sampler has an estimated

corpus error of 0.3%. If this is true, then of the 2,427,451 tokens, about 7282 are

40More technically, we should say: between the regular expressions V.D and V.N, as the verbs be,
do, and have have their own tags, e.g., VBD and VBN for forms of be.
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Error Ambiguity Uncertain Total Precision
Uncertain 46 22 18 86 53.49%
Error/Ambiguity 56 25 5 86 65.12%

Figure 2.11: Results on the BNC-sampler after removing examples involving variation
between verbal tags

estimated to be errors. All of the results we have looked at so far correspond to

distinct variation types, but each erroneous type corresponds to one token error, which

provides an estimate of the number of token errors we can expect to find. With the

confidence intervals obtained from figure 2.9, we can estimate the recall of our method.

On the low end (grouping questionable cases into the uncertain category), we have

between 2744 and 4213 errors, or between 37.69% and 57.86% recall. On the high

end (grouping questionable cases into their appropriate error or ambiguity groups),

we have between 3687 and 5180 errors, or between 50.63% and 71.15% recall. Thus,

if Leech (1997) is right, we could say that this method has detected approximately

half of the errors in the BNC-sampler; as Leech only estimates the error rate, what

we can say with more firmness is that we have detected a large number of errors, none

of which had been caught during the BNC Tag Enhancement project (Baker, 1997).

2.3.2 SUSANNE

The SUSANNE corpus, version 5 (Sampson, 1995), is worth investigating for a

number of reasons. Its annotation is composed of a much finer-grained tagset than

the Penn Treebank tagset, with 357 total tags (vs. the 48 in the Penn Treebank

and 147 in the BNC-sampler). Secondly, it is a much smaller corpus, with only
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156,622 tokens,41 making recurrence of strings much less likely. Indeed the longest

recurring text is only 16 tokens long. Finally, since it has “undergone considerable

proof-checking” (Sampson, 2003), it is likely to be very well-tagged.

Indeed, with so few words, there are much fewer n-grams detected, extending up

to a much smaller length. There are only 1501 variation nuclei, and only 104 distinct

variation n-grams between the 4-grams and the 9-grams, of which 40 are non-fringe

nuclei. And of these 40, 12 are errors, a surprisingly low amount. This low percentage,

however, can be explained in light of two factors: alteration of the original data and

ditto tags.

Firstly, there were 11 varying words called 〈formul〉, with variation between either

FO (indeterminate formula) and FOx (formula or acronym for chemical substance,

molecule, or subatomic particle) or between FOc (algebraic expression with nominal as

opposed to equative function) and FOx. These all denote different kinds of formulas,

but the original formulas have been replaced with a simple 〈formul〉 token, meaning

that the original token distinctions have been lost and are now (partially) encoded

in their tags. What our method has discovered is not erroneous tagging, but tokens

which were originally different. In addition, there are meta-tags like 〈bital〉 (begin

italics) and 〈eital〉 (end italics) which give no indication of the surrounding contentful

words, making the immediate context less informative.

41Sampson (1995) reports that there are about 130,000 words, but for our purposes we take into
account all tokens in the original file, which includes punctuation, words that have been split into
multiple tokens (e.g., the one-word term-end is split into the three-token sequence term 〈hyphen〉
end), and meta-word tokens (e.g., markers for beginning and ending italics, sentence-break markers).
Performance of the algorithm without the inclusion of these so-called “meta-tokens” is expected to
be the same, if not better, based on our discussion of the 〈pause〉 meta-tokens in the BNC-sampler.
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Secondly, eight of the varying words which are non-errors have variation between

a regular tag and a ditto tag, such as by and the in by the way.42 Ditto tags encode

the notion that a token is not an individual unit, but rather is a (somewhat non-

compositional) part of a larger “idiom.” The ditto tags, RR31 and RR32 in this case,

indicate the part of speech (RR – general adverb), the total number of elements in

the idiom (3 in this case), and the position of the current word within the idiom (1

and 2, respectively). For these multi-token words, the surrounding context is less

informative for distinguishing between an error and an ambiguity than under normal

conditions because neighboring tokens are a part of the same “word” and thus contain

the same information.

Despite the small number of errors, it is significant that the method detects any

errors at all since the corpus is small and has been carefully cleaned. We ran the

algorithm on an earlier version of the corpus, version 1 from 1992, eight years before

version 5 (2000), the version on which we obtained our results above. The current

version is generally much better-tagged, but not by very much when it comes to the

variation n-grams. In the earlier version, there were 117 distinct variation n-grams

between the 4-grams and the 12-grams, of which 46 were non-fringe nuclei. And of

these 46, 18 were errors (compare 12 out of 40). Thus, even though efforts have been

made to clean the corpus (Sampson, 2003), the kind of errors the variation n-gram

method detected were mostly not found in the eight years between versions.

42The word way also varies in the 4-gram, but only as a right fringe element and so is ignored
here.

57



2.3.3 MULTEXT-East

The MULTEXT-East corpus, version 2.1, (Dimitrova et al., 1998; Erjavec et al.,

2003) is also a small corpus (under 200,000 tokens), but it has very different properties

than the SUSANNE corpus. It is a parallel corpus consisting of translations of George

Orwell’s novel 1984 in six different Eastern European languages, as well as in the

original English version. We will only examine the tagging of the English version of

the corpus, a text of 118,424 words,43 but note that the method is being used for at

least Slovenian in the preparation of a newer version of the corpus (Tomaž Erjavec,

personal communication).

Even though it is of comparable size to the SUSANNE corpus, by the nature of

the material, it contains a much longer repetitive stretch of text, namely a 127-word

passage which appears twice. The 127-gram contains one variation nucleus (which is

an error), and it is noteworthy that the next smallest distinct variation n-gram is only

of length 11. Despite containing fewer variation unigrams than the SUSANNE corpus

(1048, as compared to 1501), the MULTEXT-East corpus has a greater number of

non-fringe elements between the 4 and 127-grams (147, as compared to 40). It also

has a higher percentage of errors: 99 out of 147, or about 67.3%.

The tagset for the MULTEXT-East project, specified in Erjavec (2001), makes

distinctions which cause unique problems for the variation n-gram method. The

tagset is a compositional tagset, with a slot for part of speech and slots for the

different features within each part of speech. For example, the tag Ncns refers to

noun-common-neuter-singular. For this kind of tagset, a question emerges about the

43The version we worked with had no capitalized words; this did not seem to greatly affect the
method.
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nature of an error, for two tags can differ and yet still be compatible. In example

(12), for instance, the word other varies between Pg (pronoun-general) and Pg3

(pronoun-general-third person).

(12) , one or other of them

The question this example raises if whether consistency in tagging is made up of more

than the right part of speech. As we interpret it, consistency requires each tag to

contain the same amount of information in the same situation. If one tag subsumes

another, the guidelines should outline what approach to take; in the BNC project, for

example, ambiguities between a general tag and a more specific tag are avoided by “al-

lowing the more general tag to subsume the more specific” (Wynne, 1996). Lönneker

and Jakopin (2004) refer to situations such as this one in the MULTEXT-East corpus

as cases of underspecification—i.e., not specifying all the relevant information that

can be provided—and these often point to errors. Lönneker and Jakopin (2004) also

discuss overspecification and how both kinds of non-compliance can point to erroneous

tagging. Note that both overspecification and underspecification potentially fall into

a larger class of errors, namely those between a real tag and a tag which should not

exist in the corpus, although this can be a difficult task for a compositional tagset

with thousands of possibilities.

Although instantiations vary from language to language, the tagset has been spec-

ified in such a way as to cover a wide range of languages. So, for example, distinction

such as feminine and masculine have been retained in the English tagset for all pro-

nouns. This can cause a problem when we have a situation as in example (13).

(13) . one of them was
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In one situation, one refers to a female and in another it refers to a rat, garnering

the tags Pp3fs (pronoun-personal-third-feminine-singular) and Pp3ms (pronoun-

personal-third-masculine-singular), respectively.44 The distinction here is non-local,

whereas it is morphologically marked for other personal pronouns in English and for

virtually all nominals in many Eastern European languages.

One final note is in order regarding the MULTEXT-East corpus. Being composed

of the novel 1984, the corpus contains passages of Newspeak, George Orwell’s thought-

enforcing version of English, evidenced in example (14).45

(14) times 3.12.83 reporting bb
X
Np

dayorder d[o]ubleplusungood refs
X
Ncnp

unpersons

rewrite fullwise
Vmn
Afp

upsub
X
Afp

antefiling
Af
Ncns

.

The task of accurate tagging here could be said to be impossible: in an afterword

to 1984, Orwell claimed that for these words, there “was an almost complete in-

terchangeability between different parts of speech.”46 However, Newspeak can be

handled with proper guidelines, and this example highlights the fact, mentioned in

the problematic cases part of section 2.2.3, that, even without knowing the correct

tag, or in this case without even fully understanding the language, it is clear that

there is no need for variation in tagging. The mere fact that it is the same sentence

is sufficient to know that tagging should be consistent.

44Assumedly, it was a male rat.

45Note that the two spellings of d(o)ubleplusungood caused the method to find two separate n-
grams, a 5-gram before d(o)ubleplusungood and a 6-gram after it, instead of a single 12-gram.
Modifying the method to map alternate spellings onto the same class would be useful in this context,
but would require a significant amount of effort for what is likely a small payoff.

46http://www.newspeakdictionary.com
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2.4 Two related ideas

Aside from the main proposal of this chapter—to use a variation n-gram analysis

combined with heuristics for detecting corpus errors—there are two simple ideas for

detecting errors which we want to mention here. These techniques are independent

of the variation n-gram method, but they share with it an emphasis on enforcing

consistency and can be combined with it in a pipeline model.

Closed class analysis

Lexical categories in linguistics are traditionally divided into open and closed classes.

Closed classes are the ones for which the elements can be enumerated (e.g., classes

like determiners, prepositions, modal verbs, or auxiliaries), whereas open classes are

the large, productive categories such as verbs, nouns, or adjectives.

Making practical use of the concept of a closed class, one can see that almost half

of the tags in the WSJ tagset correspond to closed lexical classes. This means that a

straightforward way for checking the assignment of those tags is available. One can

search for all occurrences of a closed class tag and verify whether each word found in

this way is actually a member of that closed class. This can be done automatically,

once a list of tags corresponding to closed classes and a list of the few elements

contained in each closed class have been enumerated.

Conversely, one can also search for all occurrences of a particular word that is a

member of a closed class and check that only the closed class tag is assigned. Some

of these words are actually ambiguous, though, so that additional lexical information
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would be needed to correctly allow for additional tag assignments for such ambiguous

words. More broadly, if a list of unambiguous words can be derived, then checking

that there is no ambiguity in their annotation in a corpus is easy.

The WSJ annotation uses 48 tags (including punctuation tags), of which 27 are

closed class items. Searching for determiners (DT) we found 50 words that were

incorrectly assigned this tag. Examples for the mistagged items include half in both

adjectival (JJ) and noun (NN) uses, the predeterminer (PDT) nary, and the pronoun

(PRP) them. We have not fully evaluated this method, but looking through four

closed classes (CC, DT, IN, and RP), we detected 94 such tagging errors.

In sum, such a closed class analysis seems to be useful as an error detection/correction

method, which can be automated and requires very little in terms of language specific

resources.

Implementing tagging guide rules

As mentioned in section 1.3.1, many researchers have used hand-written rules to find

errors. For example, Baker (1997) discusses that the BNC Tag Enhancement Project

used context sensitive rules to fix annotation errors. The rules were written by hand,

based on an inspection of errors that often resulted from the focus of the automatic

tagger on a few properties in a small window.

Tagging guides such as the one for the WSJ (Santorini, 1990) often specify a

number of specific patterns and state explicitly how they should be treated. One

can therefore use the same technology as Baker (1997), Oliva (2001) and others and

write rules which match the specific patterns given in the manual, check whether

the correct tags were assigned, and correct them where necessary. This provides
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valuable feedback as to how well the rules of the tagging guide were followed by the

corpus annotators and allows for the automatic identification and correction of a large

number of error pattern occurrences.

For example, the WSJ tagging manual states: “Hyphenated nominal modifiers

. . . should always be tagged as adjectives.” (Santorini, 1990, p. 12). While this rule

appears to be obeyed for 8605 occurrences in the WSJ, there are also 2466 cases of

hyphenated words tagged as nouns preceding nouns, most of which are violations of

the above tagging manual guideline, such as, for instance, stock-index in stock-index

futures, which is tagged 41 times as JJ and 36 times as NN. We again did not fully

explore this method, but we note that several times in the WSJ manual, such hard-

and-fast rules are stated, explicitly mentioning certain tags which should or should

not accompany certain words or collocations (e.g., off in worse off ).

2.5 Summary for POS annotation

We have introduced a method for detecting annotation errors that remain in

gold-standard corpora despite human post-editing and have illustrated it with POS

annotation, in addition to presenting two smaller related methods. The proposal

detects variation of annotation within comparable contexts and classifies such vari-

ation as error or ambiguity using heuristics based on the nature of the context. We

showed that an instance of this method based on identity of words in the variation

contexts—the so-called variation n-grams—successfully detects a significant number

of errors in the WSJ corpus and extends reasonably well to a range of other corpora.

The method can be used not only to point to specific errors in the corpus, but also

to point to general tagging confusions and problems with the tagging guidelines.
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The detection method can be automated, is independent of the particular lan-

guage and tagset of the corpus, and requires no additional language resources such

as lexica. The method can be applied to any corpus with annotation which is posi-

tional in nature, and the heuristics can be adapted as long as locality is still a general

property of the language and the annotation scheme. As introduced in this chapter,

the method works for positional annotations; in the next chapter, we show how the

general variation n-gram method can be extended to structural annotation, in partic-

ular constituency-based syntactic annotation, where initially there is no one-to-one

mapping between annotation and text.

The variation n-gram approach works well for part-of-speech annotation because

part-of-speech labels are usually determined by the surrounding context of words. A

word appearing multiple times with the same surrounding words is usually being used

in the same manner. A question for more complex layers of annotation is whether

the same assumption holds, i.e., whether the annotations are also disambiguated by

the surrounding context, or whether other features are needed to disambiguate, or

whether such disambiguation is not possible based only on the information explicitly

present in the corpus. If the annotations can be disambiguated by the surrounding

context, then we can continue to use a context of surrounding words to determine

if two corpus instances are the same; if the annotation is dependent upon other

factors, however, then surrounding words are less helpful and we will have to use

those other factors to determine similarity of corpus instances. We will see in the

next chapter that syntactic annotation also can be disambiguated by surrounding
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words; this should not be surprising, as the results we have seen in this chapter are

for part-of-speech, or morphosyntactic positional, labels, which strongly interact with

the syntactic structure of a sentence.
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CHAPTER 3

SYNTACTIC ANNOTATION

As outlined in the previous chapter, the variation n-gram method is effective

for detecting errors in part-of-speech annotation, and the algorithm can be easily

applied to any annotation which has a one-to-one mapping between each text token

and its annotation label. The algorithm and heuristics were shown to work for a

linguistic annotation which is determined by the surrounding context, being composed

in chapter 2 of identical words.

Syntactic annotation presents a challenge both computationally and linguistically.

First, being comprised of labels over strings of text, syntactic annotation and other

structural annotations have no direct one-to-one mapping between a token and the

annotation, and therefore many labels dominate a particular word. For example,

in figure 3.1 below, the adjective biggest is dominated by two different nps. Thus,

detecting errors in syntactic annotation using the variation n-gram method requires

a non-trivial extension to the method, which is described in section 3.1, building on

Dickinson and Meurers (2003b). Secondly, even if the method can be adapted to

handle syntactic units, instead of only individual words, it is still not clear if this

will be useful in any practical sense. Syntactic annotation can be affected by items

far removed from the immediately-surrounding local context. However, as we will
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demonstrate with the results of the method as applied to the WSJ in section 3.2, the

variation n-gram method is also effective for detecting errors in syntactic annotation

because so many distinctions are indeed still local. We also show in that section

the effectiveness of using a more general disambiguating context, that of identical

part-of-speech tags. In section 3.3, we turn to a related method of finding errors in

treebanks, based on the variation between local trees, and display its impact on the

task of grammar induction.

3.1 Detecting variation in syntactic annotation

3.1.1 Defining variation nuclei for syntactic annotation

To adapt the variation n-gram method for the detection of errors in syntactic

annotation, we must define what constitutes a nucleus as the unit of data for the

comparison of annotations. As described in the previous chapter, for POS annotation

single words (tokens) are the unit of data, and each word is paired with a part-of-

speech tag as the annotation we are interested in comparing. For syntactic annotation

it is not as straightforward to determine a unit of data with a one-to-one relation

to the syntactic category annotation since the syntactic category labels annotate

constituents, which are strings (token lists) of different length. In other words, the

length of the string making up a constituent is determined by the annotation, but we

are looking for a theory-independent, data-driven definition of a nucleus, which will

allow nuclei to be compared across identical contexts.

As a solution to this problem, we decompose the variation n-gram detection for

syntactic annotation into a series of runs with different nucleus sizes. Each run detects

the variation in the annotation of strings of a specific length, i.e., the mapping is
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between a string and a label. By performing such runs for strings from length 1 to

the length of the longest constituent in the corpus, we ensure that all strings which are

analyzed as a constituent somewhere in the corpus are compared to the annotation

of other occurrences of that string.

Two points are in order about this method for comparing syntactic annotation.

Firstly, when comparing the annotation of a string of a specific length, only the

category assigned to that entire string is compared. The internal structure of a

constituent—the syntactic annotation of its substrings—is inspected when the nuclei

of the length of the respective substrings are compared, i.e., during a different run.

Secondly, since we organize the variation detection as a data-driven search from strings

of a particular length to the syntactic categories assigned to those complete strings,

we need to decide how to handle the cases in which a string has an occurrence in which

it is not analyzed as a constituent and therefore not assigned a syntactic category. To

handle those cases, we assign all non-constituent occurrences of a string the special

label nil. Note that this has the effect that a string occurring multiple times in the

corpus without ever being annotated as a constituent will not show up as variation.

With such an approach, we are aiming to detect errors in bracketing in addition to

category label errors.

Our method does not detect differences in constituents which have one but not

both constituency borders within the nucleus, as e.g., the variation between A[BX Y]C

and D[EX] YF or [DEX YF ] (with the nucleus shown in the underlined gray box).

One could explore using a range of special labels to encode more information about

those differences, but we do not pursue this here since it violates the general idea of

our approach to compare the annotation of identical recurring nuclei within a similar

68



context given that A, B, and C differ from D, E, and F (if they are identical, the

variation is caught by our approach when the nuclei B X Y, E X, and D E X Y F

are investigated).

Let us take a look at an example from the WSJ treebank, the variation 12-gram

in (15), which includes a nucleus of size two.

(15) market received its biggest jolt last month from Campeau Corp. , which

The string last month is a variation nucleus in this 12-gram because in one instance

in the corpus it is analyzed as a noun phrase (np), as in Figure 3.1 while in another

it does not form a complete constituent on its own, as shown in Figure 3.2.

The

DT

shaky

JJ

market

NN

received

VBD

its

PRP$

biggest

JJS

jolt

NN

last

JJ

month

NN

from

IN

Campeau

NNP

Corp.

NNP

,

,

NP NP NP

TMP

NP

NP

Figure 3.1: An occurrence of “last month” as a constituent

The

DT

fragile

JJ

market

NN

received

VBD

its

PRP$

biggest

JJS

jolt

NN

last

JJ

month

NN

from

IN

Campeau

NNP

Corp.

NNP

,

,

NP NP NP

Figure 3.2: An occurrence of “last month” as a non-constituent
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As another example, take the variation 4-gram from a year earlier, which appears

76 times in the WSJ. Out of those, the nucleus a year is labeled noun phrase (np)

68 times, and 8 times it is not annotated as a constituent (because it is bracketed

with earlier as an np). An example with variation between two syntactic categories

involves the nucleus next Tuesday as part of the variation 3-gram maturity next Tues-

day, which appears three times in the WSJ. Twice it its labeled as a noun phrase

(np) and once as a prepositional phrase (pp).

Having clarified how we can define the notion of a variation nucleus to detect

variation in syntactic annotation and shown that it can be used for detecting category

label and bracketing errors, we now take a closer look at how the variation nuclei and

the variation n-grams are computed for a given treebank.

3.1.2 Computing the variation nuclei of a treebank

A simple way of calculating all variation nuclei would be to perform the following

procedure for all i between 1 and the length of the longest constituent in the corpus:

First, step through the corpus and store all stretches of length i with their category

label, or with the special label nil if that list of corpus positions is not annotated as

a constituent. Second, eliminate the non-varying stretches.

However, such a generate-and-test methodology which for every corpus position

stores the list of words of length i for all i up to the length of the longest constituent

in the corpus is clearly not feasible for dealing with larger corpora. Instead, we

can make use of the observation from the last section that a variation necessarily
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involves at least one constituent occurrence of a nucleus. We thus arrive at the

following algorithm to calculate the set of nuclei for a window of length i (1 ≤ i ≤

length-of-longest-constituent-in-corpus):

1. Compute the set of nuclei:

a) Find all constituents of length i, store them with their category label.

b) For each distinct type of string stored as a constituent of length i, add the

label nil for each non-constituent occurrence of that string.

2. Compute the set of variation nuclei by determining which of the nuclei were

stored in step 1 with more than one label.

In addition to calculating the variation nuclei in this way, we generate the varia-

tion n-grams for these variation nuclei as defined in section 2.2.1, i.e., we search for

instances of the variation nuclei which occur within a similar context. The motiva-

tion for the step from variation nuclei to variation n-grams is that a variation nucleus

occurring within a similar context is more likely to be an error, and again we define

a similar context as a context of identical words surrounding the variation nucleus.

3.1.3 Context generalization

To increase the recall of the error detection method, one can also experiment with

using different types of context, such as requiring the context surrounding the nucleus

to consist of identical POS tags instead of identical words. This will allow nuclei which

appear next to low-frequency words to be grouped with other strings sharing the same

POS labels. Given that treebanks generally also have part-of-speech information
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available for every token, implementing this idea requires no extra technology.47 We

thus experimented with using this more general context on the original set of variation

nuclei.

3.2 A case study: Applying the method to the WSJ treebank

To test the variation n-gram method as applied to syntactic annotation, we per-

formed a case study with the WSJ corpus as part of the Penn Treebank 3 (Marcus

et al., 1999). Before presenting the results of the case study, there are a few points

to note about the nature of the corpus and the format we used.

3.2.1 Properties of the corpus

Syntactic categories and syntactic functions The syntactic annotation in the

WSJ includes syntactic category and syntactic function information. The annotation

of a constituent consists of both pieces of information joined by a hyphen, e.g., the

label np-tmp is used to annotate a constituent with a category of noun phrase (np)

functioning as a temporal modifier (tmp). The syntactic category of a constituent is

generally determined by the lexical material in the covered string and the way this

material is combined; the syntactic function of a constituent, on the other hand, is de-

termined by the material outside of the constituent. For example, one can determine

that the string last month is an np based solely on the string, but we have to look at

the surrounding material in order to determine what function last month has within

the sentence. As a consequence, the consistency test of the mapping from strings to

47Grouping some words into other classes, such as numbers, dates, and company names could also
be highly beneficial, in that we would expect greater recall with little drop in precision. As this
requires additional technology, in the form of an intelligent tokenizer or chunker, we choose not to
pursue this here.
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their syntactic annotation we are proposing in this chapter is most appropriate for

the syntactic category annotation, and we thus focus only on this annotation for our

case study. Nevertheless, the variation n-gram approach is also applicable to syntac-

tic function annotation because a variation n-gram is a nucleus within a context, i.e.,

within an environment which constrains the syntactic function of the nucleus.

For the case study, we used the TIGERRegistry developed at the University of

Stuttgart to import the corpus into TIGER-XML format (König et al., 2003). The

TIGERRegistry import filter we used removes the function labels from the categories

and places them as edge labels onto the edge above the category; e.g., a temporal noun

phrase (np-tmp) becomes a noun phrase node (np) under an edge labeled temporal

(tmp). Thus, the TIGER-XML format allows easy access to the tokens and the

syntactic category labels using XSLT (Clark, 1999), and we generate a file with all

the (non-nil) constituents this way. Once the nil strings have also been calculated,

our variation n-gram algorithm then runs on the output of this process.

Null elements In addition to providing the syntactic category and function anno-

tation, the WSJ annotators also modified the corpus text by inserting so-called null

elements, e.g., markers for arguments and adjuncts which are realized non-locally,

or unstated units of measurement (cf. Bies et al., 1995, p. 59). For example, *T* is

inserted to mark the trace of A’ movement, marking “the interpretation location of

certain constituents that are not in their usual argument position,” as in What1 are

you thinking about *T*1? (p. 61). The syntactic annotation of these empty elements

is largely determined through theoretical considerations and the non-local occurrence

of linguistic material, not the empty element itself or its local context. In other words,
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the variation in the annotation of a null element as the nucleus is largely independent

of the local environment so that such nuclei should be ignored when testing for the

consistency of the mapping from strings to their syntactic annotation. We will see an

illustration of this in the discussion of the case study results in the next section.48

Unary branching Finally, we need to discuss a special type of syntactic con-

stituency which is directly relevant when talking about the possible mappings from

strings to constituency: categories dominating only a single daughter. The syntactic

annotation in the WSJ makes use of such unary branches, which are motivated by

theoretical considerations. For our discussion, the important aspect is that a unary

branch causes the same string to be annotated by two distinct categories, which would

be detected as a variation in the annotation of this string without further modification

to the algorithm. To instead obtain the interpretation that the two syntactic cate-

gories conjunctively characterize the string, we replaced all unary syntactic structures

with a category label consisting of the mother and the daughter category. For exam-

ple, as discussed in Bies et al. (1995), a quantifier phrase (QP) which is missing a

head noun, such as 10 million, in the WSJ is dominated by a noun phrase (NP) node

48Since null elements are inserted by the makers of the treebank, one could consider whether or
not the null elements have been consistently inserted throughout the corpus. The variation n-gram
method could be adapted for this purpose, but we do not go into details here.
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in a unary structure. We replace this structure with the new category label NP/QP.

This conversion added 70 syntactic category labels to the original 27 labels49 used in

the WSJ.50

3.2.2 Results from the WSJ

Using the syntactically-annotated WSJ corpus—a corpus of 1,253,013 tokens in

49,208 sentences—in the format described above, we ran the variation n-gram method

for every possible nucleus size. As shown in Figure 3.3, the WSJ contains constituents

from size 1 to size 271, making these the only possible nucleus sizes.

1

10

100

1000

10000

181932

25 50 75 100 125 150 175 200 225 250 275n
u
m

b
er

of
o
cc

u
rr

en
ce

s

size of constituent

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××
×××××××××××

××××
×
××××××××××××××

×
×
×
×××× × × ×

Figure 3.3: Constituent length in the Wall Street Journal Corpus

49The manual (Bies et al., 1995) defines 26 category labels; additionally the part-of-speech label
CD occurs as a category label in the corpus, which is likely an error. For more on using the manual
in this way to detect errors, see section 2.4.

50Of the 70 added labels, two are noteworthy in that they display multiple levels of unary branch-
ing, namely NP/NP/QP for 3 1/2 and PRN/FRAG/WHADJP for how incompetent at risk assess-
ment and evaluation. The former appears in variation and is an error, while the latter appears to
be correct.
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The largest repeating string with variation in its annotation is of size 46. Figure

3.4 shows the number of variation nuclei for sizes 1 through 46.51 In total, there are

34,564 variation nuclei, more variation than with the part-of-speech variation analysis

where there are 7033 variation nuclei, as shown in figure 2.1 in the last chapter.52

i nuclei i nuclei i nuclei i nuclei i nuclei

1 9150 8 122 15 8 22 3 35 2

2 14654 9 87 16 10 23 3 36 1

3 6156 10 69 17 10 24 3 37 1

4 2520 11 45 18 9 26 1 45 2

5 1022 12 37 19 9 27 2 46 2

6 393 13 18 20 6 28 4

7 196 14 15 21 2 31 2 total 34,564

Figure 3.4: Nucleus size and number of different nuclei

To evaluate the precision of the variation n-gram algorithm, we need to know

which of the detected variation nuclei actually include category assignments that are

real errors. To do so, we examine the distinct variation nuclei, as we did with POS

annotation, where by distinct we mean that each corpus position is only taken into

account for the longest variation n-gram it occurs in. Furthermore, as shown in

section 2.2.3, variation nuclei which appear on the fringe of a variation n-gram (i.e.,

nuclei which border words that are not part of the variation n-gram) are unreliable for

51Nucleus sizes with zero counts are omitted.

52This number is what was reported in Dickinson and Meurers (2003b). However, if one changes
the way in which traces are handled, there are 36,859 variation nuclei. Originally, tokens such as
*T*-1 and *T*-2 were treated uniquely, even though 1 and 2 are simply coindices which point to
other parts of the sentence. Grouping all instances of null elements with coindexation markers into
the same type, e.g., in this case *T*, gives more variation nuclei. We group all instances of *T*
together for A second test below and show that the results obtained are parallel.
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determining whether there is an error or not. Even though one might think a larger

nucleus is as good as a longer context, we make no such assumption because the

contextual information still affects arbitrarily long material (discussed more below).

Thus, for syntactic error detection, we examined only non-fringe nuclei, giving us a

total of 6277 distinct variation nuclei, as shown in Figure 3.5.

i nuclei i nuclei i nuclei i nuclei i nuclei

1 3165 8 92 15 2 22 1 35 3

2 1235 9 75 16 13 23 2 36 2

3 705 10 64 17 10 24 4 37 2

4 338 11 58 18 18 26 5 45 3

5 152 12 37 19 22 27 4 46 4

6 131 13 29 20 6 28 4

7 82 14 6 21 1 31 2 total 6277

Figure 3.5: Non-fringe distinct nuclei counts

From these 6277, we randomly sampled 100 examples and marked for each nu-

cleus whether the variation in the annotation of the instances of this nucleus was an

annotation error or an ambiguity. We found that 71 out of 100 examples were errors.

The 95% confidence interval for the point estimate of .71 is (.6211, .7989), i.e., the

number of real errors detected in the 6277 cases is estimated to be between 3898 and

5014.

It should also be noted that most of the variations involved were between a regular

category and a nil string. Of the 6277 distinct variation nuclei, 4813 (76.68%) of

them were variation between nil and a single other category, and 130 more nuclei

involved variation between nil and at least two other labels. Thus, methods like
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those mentioned in Kaljurand (2004) and Ule and Simov (2004) which do not deal

with problems in a “lack of structure” will miss three-quarters of the errors we are

able to find. These kinds of errors in bracketing, as discussed in section 3.3, are

especially detrimental to natural language processing technologies such as grammar

induction algorithms because one cannot hope to learn the correct label for a string

if it is not even bracketed correctly.

Ambiguities We examined the 29 ambiguous nuclei in the sample to see if they had

certain identifiable properties which could be used to remove them from consideration

and increase the precision of the method. Of the 29 ambiguous nuclei, ten are a

null element (nucleus size of one) which varies between two different categories, and

the ambiguity arises because the null element occurs in place of an element realized

elsewhere. For instance, in example (16), the null element *EXP* (expletive) can be

annotated as a sentence (S) or as a relative/subordinate clause (SBAR), depending

on the properties of the clause it refers to.

(16) a. For cities losing business to suburban shopping centers , it *EXP*S may be
a wise business investment [S * to help * keep those jobs and sales taxes
within city limits] .

b. But if the market moves quickly enough , it *EXP*SBAR may be impossible
[SBAR for the broker to carry out the order] because the investment has passed
the specified price .

Removing null elements as variation nuclei of size one reduces our set of non-fringe

distinct variation nuclei to 5584, and changes our proportion of errors to 71 out of

90 (78.9%). The 95% confidence interval becomes (.7046, .8732), meaning that out

of the 5584 examples, we are 95% confident that there are between 3934 and 4875

errors. Thus, eliminating these null elements increases the precision without much of

a reduction in the number of estimated errors, as summarized in figure 3.6.
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Condition Precision Errors

Original 71% 3898–5014
Without nulls 79% 3934–4875

Figure 3.6: Accuracy rates for the WSJ

Another six ambiguities deal with coordinate structures. In the guidelines of the

Penn Treebank (Bies et al., 1995), there is a distinction made for simple and complex

coordinate elements. Even if an element is simple (i.e., non-modified), it is annotated

like a complex element when it is conjoined with one. In figure 3.7, for example,

interest is part of a flat structure because all the nouns are simple.

The

DT

amount

NN

covers

VBZ

taxes

NNS

,
,

interest

NN

and

CC

penalties

NNS

owed

VBN

NP NP

Figure 3.7: An occurrence of “interest” in a flat structure

In figure 3.8, on the other hand, interest is an np because it conjoins with a

modified noun, which has to be labeled np. These coordination ambiguities are

fairly systematic, but different from our decision to exclude null elements from being

variation nuclei, it is not as clear how to completely eliminate this ambiguity because

the conjunct is not always visible in the n-gram. In the next section, however, we

will discuss eliminating fringe coordinates from consideration.
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NP

Figure 3.8: An occurrence of “interest” in a complex coordinate structure

One further note is in order regarding inconsistencies in the Penn Treebank. The

way the guidelines are written (Bies et al., 1995), there is at times not only an

acknowledgment of potential inconsistencies, but what appears to be an acceptance

of it. The examples from (17) are taken directly from the bracketing guidelines. Even

if one has the same sentence in different parts of the corpus, there is no restriction

that they must be annotated in the same manner. Although the task is a difficult one

and at times subjective, clear documentation about what to do in problematic cases

is necessary; see section 2.2.3 (under Problematic cases) for a discussion of corpus

annotation guidelines in the context of part-of-speech annotation.

(17) a. “Use of PRN is determined ultimately by annotator intuition” (p. 40).

b. “Certain constructions that are sometimes analyzed using *NOT* are more
likely to be annotated more simply, usually using PRN or FRAG or just PP”
(p. 90). [Followed by five different possible annotations]

c. (Talking about wh-phrases) “There are a number of tricky cases for which
there is no policy. ... Possible bracketings are listed for each case” (p. 166).

A second test In addition to using distinct non-fringe variation n-grams to eval-

uate the precision of the method, we also experimented with examining the shortest

possible n-grams which were non-fringe, in order to place a precedence on the “distrust
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the fringe” heuristic. This gave us 3965 “shortest” non-fringe n-grams. Note that we

have fewer of these than with the distinct variation n-grams evaluation because each

type of non-fringe variation n-gram now corresponds to more token occurrences. Also

noteworthy is that over half of these—2015 examples—contained nuclei of length one,

due largely to the fact that individual words are most likely to be repeated. From all

3965 cases, we sampled 100 and found that 67 of them pointed to an error; four more

examples were deemed too unclear to judge. This 67% is consistent with the 71%

found using distinct variation n-grams, especially considering the four unclear cases.

The 95% confidence interval for this point estimate of .67 is (.5778, .7622), meaning

that there are between 2291 and 3022 errors in this set with 95% confidence. Note

that these are counts of the shortest variation nuclei (i.e., recurring strings), and

the number of instances of erroneous annotation could be much higher. By their

definition, each variation nucleus has at least two instances which differ in their

annotation; each variation that is not an ambiguity thus corresponds to at least one

instance (but possibly more instances) of erroneous annotation.

Many of the ambiguities were again due to empty elements and nuclei whose

only context on either the right or the left was a conjunction. Removing the seven

examples with coordinates from the sample results in a precision of 68.82% (64/93),

and removing the thirteen examples with null items results in a precision of 75.86%

(66/87), paralleling the jump in precision we saw with the distinct variation n-gram

method of evaluation. By removing both kinds of examples, we obtain a precision of
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78.75% (63/80) and narrow down the set of non-fringe n-grams to 3019 by removing

those 946 examples (600 with coordinates as context, 346 with an empty element as

the nucleus).53 The results are summarized in the top half of figure 3.11.

One might suspect that longer nuclei would have a greater precision for finding

errors since they have more information in them internally. To get at this question,

we broke down our results by nucleus size, as presented in figure 3.9. We see the

general trend that with longer nuclei the precision stays high. But often when there

is a long nucleus, the context is also the same, so it is unclear if a longer nucleus size,

irrespective of context, will be sufficient to detect errors. Judging from this figure

alone, it appears as if the unigrams are the worst category, but if we remove the null

elements of length one, we find that the precision jumps to 75% (27/36), and it is

difficult to say whether the size of the nucleus has any effect on the precision of the

method.

For example, in (18) we find a variation nucleus of size 5, chairman and chief

executive officer surrounded by commas. In (18a) this is an np, while in (18b) and

19 other examples it is part of a bigger nominal constituent and thus is assigned the

category nil. Despite the relatively long nucleus, this is still an ambiguity because

the surrounding context beyond the n-gram is informative as to the nature of this

nucleus.

(18) a. Sam Ginn , [NP [NP chairman] and [NP chief executive officer]] , told se-
curities analysts in New York that the company expects somewhat slower
per-share earnings growth in 1990 , although annual growth should return
to the traditional figure of about 7 % thereafter .

53Considering the similarity in precision between the two evaluation methods and the relative
computational ease of this second method of evaluation, we will use the shortest n-grams in future
evaluation. If we were to similarly re-test with the POS method in chapter 2, this would correspond
to looking at only the trigrams.
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Size Errors Total Precision
1 28 49 57.14%
2 18 22 81.81%
3 8 13 61.54%
4 5 5 100%
5 2 4 50%
6 2 2 100%
7 1 1 100%
8 1 1 100%

11 1 1 100%
12 1 1 100%
24 1 1 100%

Figure 3.9: Number and precision of errors for each nucleus size with word context

b. Jack Davis , Dataproducts ’ [NX [NX president] , [NX chairman] and [NX

chief executive officer]] , said 0 the company “ is at a loss * to understand
DPC ’s intentions . ”

Something further should be said about contexts of coordination. Even though

coordinating conjunctions are not good indicators of errors, it is possible to simply ex-

tend the context further to see if the nucleus still matches. For example, the sentence

in (19) appears twice in the WSJ with the variation nucleus as underlined. Here, co-

ordination does not hinder the method because the context beyond the coordinating

conjunction is exactly the same in both cases.

(19) Also shown * is *T* the closing listed market price or/CC a dealer-to-dealer
asked price of each fund ’s shares , with the percentage of difference .

Context generalization We experimented with using contexts composed of POS

tags, in an effort to increase recall. Indeed, the POS-generalization gave us 9074

shortest non-fringe variation nuclei, more than twice as many as the method with

word contexts. Again, over half of these (4653) have nuclei of length one. We sampled
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100 of the 9074 cases and found that 52 pointed to an error. We broke this down

by nucleus size and found similar trends as with the word contexts, as shown in

figure 3.10.

Size Errors Total Precision
1 19 48 39.58%
2 17 30 43.59%
3 4 9 44.44%
4 2 2 100%
5 1 2 50%
8 1 1 100%
9 2 2 100%

10 2 2 100%
12 1 1 100%
13 1 1 100%
17 1 1 100%
20 1 1 100%

Figure 3.10: Number and precision of errors for each nucleus size with POS context

The 95% confidence interval for the point estimate of .52 is (.4221, .6179), which

means that we estimate between 3830 and 5607 errors with 95% confidence. The POS

generalization, then, detects upwards of 2500 more errors than the regular method

with word contexts, and the precision remains above 50%.

As with the regular method, we can also remove null element nuclei (359 examples)

and contexts of coordination (1229 examples) from consideration. We only saw one

null element nucleus, so it is hard to generalize, but removing null elements gives us a

precision of 52.52% (52/99), removing contexts of coordination gives 57.65% (49/85),
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and removing both gives 58.33% (49/84), while narrowing down the search to 7486

total shortest variation nuclei. The results for the WSJ are summarized in figure 3.11.

Context Condition Precision Errors

Word Original 67% 2291–3022
Without nulls 76% 2420–3070
Without CC 69% 1999–2632
Without both 79% 2106–2647

POS Original 52% 3830–5607
Without nulls 53% 3719–5435
Without CC 58% 3698–5346
Without both 58% 3577–5155

Figure 3.11: Accuracy rates for the WSJ using shortest variation nuclei

A few notes about the POS context generalization are in order. First, we should

mention that sometimes the task is exactly the same as with word contexts. Not

surprisingly, we sometimes see the same parts of speech in the context because the

words in the context are exactly the same. For example, we find the variation n-gram

in (20a), where TO and . are POS labels, but this amounts to the same thing as

(20b), with lexical items in context.

(20) a. TO 1/2 point .

b. to 1/2 point .

This is of course not to say that the context generalization produces trivial results;

using POS labels for context turns up many new errors. For example, with the nucleus

little or no varying between adjp and nil, it is not important whether it is followed

by effect or loss ; the fact that they are both nouns (NN) helps this error to be located.
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Secondly, some of the errors that were found were not errors in structure, but

errors in the surrounding context. For example, we have the trigram in (21a) where

competition varies between np and nil. When we examine the np case, however, we

find it as in example (21b).

(21) a. NN competition .

b. forcing the bank to face/NN competition .

Here, face has clearly been wrongly annotated, and this error in the context causes us

to detect variation in a context which is not really the same. Since we still discovered

an error, even if not a structural one, we grouped these six cases into the 52 erroneous

cases.

Thirdly, there were four cases which could not properly be called an error, but

which appeared to be typographical errors in the original WSJ text or textual errors

introduced when putting the Wall Street Journal into the Penn Treebank format. For

example, the string * beginning in varies between s and nil in the context in (22a).

The nil case is clear, as in requires a following noun (or indication of such in the

Penn Treebank scheme) and thus forms a unit only when that noun phrase is added,

as in (22b). The s case is a sentence which abruptly ends with the word in, as if the

data was chopped off prematurely. We did not group these cases with the errors, but

note that we have detected a pattern which violates the rules of English.

(22) a. NNS * beginning in DT

b. * beginning in April 1990
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3.3 Grammar rule error detection

Turning to a technique more driven by the annotation but still motivated by a de-

sire for consistency, one can also examine the properties of local trees assigned within

a treebank. The approach presented here also focuses on detecting inconsistencies,

but instead of focusing on the consistent assignment of a label to a string, as in the

approach presented in sections 3.1 and 3.2, we here investigate the consistency of

labeling within local trees. Eliminating inconsistencies can have a practical effect on

parser performance, in addition to the qualitative improvement of the corpus, and we

show in section 3.3.4 that eliminating the detected errors from the training data of a

probabilistic context-free grammar (PCFG) parser improves its performance.

3.3.1 Procedure

Most natural language expressions are linguistically analyzed as endocentric, i.e., a

category projects to a phrase of the same general category. For example, an adjective

will project to an adjectival phrase. This assumption is directly encoded in the widely

adopted X-bar schema (Jackendoff, 1977), a generalization over phrase structure rules,

and similar generalizations are encoded in virtually all constituency-based syntactic

frameworks. An interesting effect of this organization of constituent structure is

that one can generally determine the syntactic category of the mother based on the

categories of the daughters. We thus propose to systematically search for variation

in the mother categories dominating the same daughters in order to find erroneous

annotation in local trees.
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More concretely, to identify potentially erroneous rules, we extract all local trees

from a treebank and index the resulting rules by the daughters list. For each list

of daughters (consisting of part-of-speech labels for lexical daughters and syntactic

category labels for phrasal daughters), the set of immediately dominating mothers is

determined. If this immediate dominance (ID) set has more than one element, we

will say that a daughters list shows ID variation and interpret it as an indication of

a potential error. Note that this approach turns the usual conceptualization of local

trees as rules on its head: instead of looking for which daughters can expand a fixed

mother category, we are fixing the daughters and asking which mother categories can

dominate these daughters.

The statistical parsing literature (see, e.g., chapters 11 and 12 of Manning and

Schütze (1999) and references therein), often examines the multiple possible daughters

of a given mother in order to calculate the probabilities for the rules. The ID variation

errors we are interested in affect the probabilities of the daughters of a certain mother.

If a daughters list β has mothers A and B and if B is wrong, then the probability for

B generating β is incorrect, which affects the probabilities for B generating any other

daughters list since all probabilities sum to one.

Let us illustrate the idea of ID variation with an example from the Wall Street

Journal (WSJ) as annotated in the Penn Treebank 3 (Marcus et al., 1993). The

daughters list advp vbn np (adverbial phrase, past participle, noun phrase) occurs

167 times in the WSJ, with two distinct mother categories: verb phrase (vp, 165

times) and prepositional phrase (pp, 2 times). Based on the endocentricity consid-
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erations mentioned above, a past participle verb (vbn) is expected to project to a

verbal category, such as vp, but not to a pp—and indeed the two trees dominated by

pp turn out to be incorrect.

Note that, like the variation n-gram method, we are here also looking for con-

sistency, but unlike the variation n-gram method, we are driven by the annotation

(and not the lexical items) and we look for errors/variations independent of context.

The mother category of non-lexical items should in general not vary, irrespective of

context.

3.3.2 ID variation in the WSJ

Running the algorithm sketched above on the entire WSJ corpus, we obtain 844

lists of daughters which are assigned more than one mother category in the corpus.

To investigate how many of these variations in mother category point to errors,

we randomly sampled 100 of these daughters lists and manually evaluated for each

whether it points to an error, a genuine ambiguity, or whether it was unclear according

to the annotation guidelines. We only count a daughters list as pointing to an error if

for (at least) one of the mothers in the ID set, every occurrence of the daughters with

that mother is an incorrect annotation. Of the 100 daughters lists, 74 pointed to an

error, 24 were genuine ambiguities, and 2 were unclear. For the total of 844 daughters

lists obtained for the full WSJ this means that, based on the 95% confidence interval

for the point estimate of .74 (.6540,.8260), between 552 and 697 of the 844 variations

point to errors.
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Since each pairing of a daughters list and a mother category constitutes an instance

of a phrase structure rule, it is interesting to know how many rules the 100 daughters

lists with their possible mother categories correspond to. For our sample of 100

daughters lists, there are 291 such rules, i.e., each ID set on average contains 2.91

categories.

Zooming in on the 74 cases pointing to at least one erroneous rule, we want to

know how many of the elements of the ID set are errors (it could be anywhere be-

tween one and the entire set, in which case none of the annotations are correct).

The 74 daughters lists correspond to 223 different rules, and examining all instances

shows that 127 of the rules are errors. For example, the daughters list in np (prepo-

sition/subordinating conjunction, noun phrase) has a nine element ID set (i.e., nine

different mothers in the corpus). Three of the elements (pp, frag, x) can indeed

occur as mothers for the daughters list in np. Six of the elements (adjp, advp, np,

sbar, vp, whpp) are never correct. In sum, the daughters list in np corresponds to

six erroneous rules.

Analyzing the nature of the 74 daughter lists pointing to errors, the errors fall

into three groups: daughter label errors (38), mother label errors (41), and bracketing

errors (13), with some errors having multiple causes. Note that this overlaps very little

with the variation n-gram method. In that method, 4813 out of 6277 variations were

nil-based, i.e., highlighted discrepancies in the bracketing of the strings. Thus, it

seems that this grammar rule error detection helps locate errors we are not otherwise

able to find very robustly.
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As an example of a daughter error, we have the daughters dt dt nn, with variation

between the mothers np and qp. One example of this rule annotated as np is in (23).

In this situation, according to the POS guidelines (Santorini, 1990), all should be a

predeterminer (pdt), not a determiner (dt). We should also note that, while many

variation local trees have relatively few token occurrences, for this example we have 19

occurrences (token counts) of the rule np → dt dt nn and the number of incorrect

local trees is thus likely to alter any method training on the corpus. We will return

to the issue of token counts shortly.

(23) all
DT

the
DT

hoopla
NN

A mother labeling error can be seen with the daughters jj , nn cc jj. The

mother category varies between adjp (adjective phrase) and ucp (unlike coordinating

phrase). Because we have a noun coordinating with an adjective, it should be ucp

in all cases, and thus we have a mother labeling error in example (24), which is

annotated adjp.

(24) the [ADJP scientific
JJ

,
,
engineering
NN

and
CC

academic]
JJ

communities

Although both mother and daughter labeling errors are common, sometimes it may

not be clear exactly what kind of error it is. All we can determine is that there is a

mismatch between the mother and the head daughter, i.e., the rule is non-projective

and violates the principles of endocentricity. For example, we find the single (unary)

daughter rp dominated by prt, advp, pp, and adjp in different corpus occurrences.

The guidelines state that prt is the ”[c]ategory for words that should be tagged rp”

(Bies et al., 1995). Thus, we can deduce that advp, pp, and adjp are mismatches

with the rp POS tag. For example, we find both up and down in example (25)
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annotated with rp POS tags and advp category labels. Which labeling is correct

may be debatable (rb dominated by advp seems most likely here), but it is clear

that either the mother or the daughter must change.

(25) may blip [ADV P up]
RP

again before they blip [ADV P down]
RP

An example of a bracketing error can be seen in the single daughter rbs (superla-

tive adjective). We find examples like (26), where least is marked as rbs dominated

by np. The guidelines state that at least should be bracketed as a flat advp. Thus,

by making least into a constituent, we have an extra, unnecessary level of structure

in the tree.

(26) But Hertz points out that at [NP least]
RBS

it ’s now charging only $ 3.95 *U* a

day in Texas , while some competitors are charging $ 6.99 *U* .

We mentioned that an example could have multiple kinds of errors, and the daugh-

ters list in np when it is dominated by vp is a good example. In (27a), we see a

bracketing error, where all of runs, up, and high commission costs should have been

bracketed as sisters of a mother vp. (The part-of-speech for up is also wrong; it

should be rp.) In (27b), we see a mother category error, in that past it is not a verb

phrase, but a prepositional phrase (or perhaps adverbial). And in (27c), we find a

daughter error in the clearly erroneous tagging of like, tagged as a preposition (in)

when it is obviously a verb (vb).

(27) a. Frequent trading runs [V P up
IN

[np high commission costs]] .

b. Turkey in any event is long [V P past
IN

[np it]] .
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c. It turns out 0 Mr. Friend ’s client , Machelle Parks of Cincinnati , did n’t

[V P like
IN

[np the way 0 defense attorney Tom Alexander acted during the

legal proceedings *T*]] .

In addition to examining the number of types of local trees affected, we also

counted the number of local tree tokens which are erroneous in the corpus. Of the

127 tree types (rules) which are erroneous, we find 847 occurrences in the treebank.

Treebank effects Part of the reason that this method of detecting errors in gram-

mar rules implicit in a treebank works well is because of the particular theory used

in this treebank. Instead of representing the text exactly as it is, null elements have

been inserted, and thus phrasal rules retain their daughters, even if “missing.” For

instance, in example (28a), we find an sbar dominating an s and nothing else. Nor-

mally, an sbar will have a complementizer, and—because this treebank uses null

elements—it should have a null complementizer even when there is not one overtly.

That is, the sentence should look as in (28b), which would mean that sbar now has

a different daughters list, namely -none- s.

(28) a. He thought [SBAR [S the moves in the metals last week were most influenced
* by the uncertainty in the equity and other financial markets]] .

b. He thought [SBAR 0/-NONE- [S the moves in the metals last week were most
influenced * by the uncertainty in the equity and other financial markets]] .

The theoretical generalizations, however, have to account for the data actually

found in the corpus, and null elements are not always called for. The guidelines for

vp gapping and the like often do not use null elements and could in principle be a
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source of variation, yet we obtained quite good results. Thus, it is possible that this

work will be also useful for treebanks which maintain a closer connection between the

structure and the surface realization.

Regardless of inserted elements or not, there are some properties of the distinc-

tions made in the treebank which can cause problems for any method searching for

endocentricity violations, namely properties of the annotation scheme which directly

violate endocentricity. The guidelines for proper nouns (words annotated with the

POS tag nnp or nnps) are a good example of this. The rule for POS annotation

seems to be that capitalized words which appear in a title should be tagged nnp, as

in example (29a), which means that a title like Saved by the Bell gets annotated as

in (30a). In the syntactic guidelines, however, titles are specified to be annotated like

running text (and with a ttl (title) function tag), e.g., as in (29b). Thus, we find

the structure for (30a) as given in (30b) for the WSJ. The nnp and its vp mother

seem to be unrelated from an endocentric perspective, and it is caused by the fact

that the POS and syntactic guidelines diverge in terms of what linguistic facts they

are capturing. Using knowledge about the ttl function tag in conjunction with an

nnp daughter might be useful in this context, but we do not explore this here.

(29) a. A
NNP

Tale
NNP

of
IN

Two
NNP

Cities
NNP

(Santorini, 1990, p.32)

b. [S-TTL [NP-SBJ *] [VP Driving [NP Miss Daisy]]] (Bies et al., 1995, p. 207)

(30) a. Saved
NNP

By
NNP

The
NNP

Bell
NNP

b. [VP Saved
NNP

[PP By the Bell]]

Discussion An important question raised by the presence of errors we have detected

is: how does it affect NLP technology? Discussing how incorrect grammar rules cause
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problems for treebank grammars, Charniak (1996) lists five reasons why parsers might

fail to return the correct analysis for a sentence, and two of these are directly relevant

here. In terms of training, parsers can fail to give the correct parse because “the rules

are there, but their probabilities are incorrect” (Charniak, 1996, p. 6). As we have

shown, with variation between mothers, the probabilities of rules will be incorrect.

In terms of testing, as we showed in section 1.2.1, a parser can fail because “it found

the correct parse, but the tree-bank ’gold standard’ was wrong” (Charniak, 1996,

p. 6). The errors we have presented here clearly are problematic for any accurate

evaluation.

It is also noteworthy that the method pursued in this section catches three different

kinds of errors. Krotov et al. (1998) are able to catch some bracketing errors during

grammar compaction, namely by parsing the RHS of rules using other rules and thus

adding structure where there (often) should have been structure before. And methods

like that of Charniak (1996) use right-bracketing preferences to avoid some bracketing

errors. But grammar compaction methods do nothing to remove mother or daughter

labeling errors, which together occurred in nearly all of the variation error examples.

Given the potential negative impact of errors detected by our method, we want to

know to what degree they are problematic. We will thus examine the task of training

different models for supervised grammar induction in section 3.3.4, with and without

erroneous rules included. To set up this experiment, however, we first need to detect

which specific erroneous rules are wrong since up to this point we have only identified

erroneous ID variation sets, and we will do this in section 3.3.3.
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3.3.3 Automatic detection of erroneous rules

We have established that ID variation is useful for finding incorrectly annotated

local trees and, by extension, the rules licensing these trees. To make this observation

practically useful for a large corpus, where hand validation often may not be feasible,

we now need to define a heuristic for automatically detecting which of the elements

in the ID set of a given daughters list are errors and which are a part of a legitimate

ambiguity.

These results can then be used to remove rules from a treebank grammar (as

we do in section 3.3.4), if one wishes, but ultimately how these erroneous rules are

accounted for in a parsing regime depends on the details of the system.54

Frequency-based heuristics For PCFG parsing, it is often assumed that one can

prune low-frequency rules without a degradation in parsing performance (Gaizauskas,

1995; Charniak, 1996; Cardie and Pierce, 1998) (although there is some indication

that this is not always the case (Bod, 2003)). Based on this idea, one can create a

heuristic counting the low-frequency ID variation categories as errors and the frequent

ones as genuine ambiguities.

Thus, we first isolated all rules which occurred only once in our sample set, in order

to gauge how well this simple and commonly-used method of elimination works. The

results are given in figure 3.12, for both type and token counts, where we report how

many of the erroneous trees the heuristic identifies out of all the trees it identifies

54One could assess penalties for a parse tree which uses a flagged penalty, for example, thereby
not eliminating a rule completely but discouraging its use.
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(precision) and out of all the trees it should have identified (recall). Since each rule

we detect here occurs only one time, the type and token precision figures are exactly

the same.

Precision Recall
Types 74.75% (74/99) 58.27% (74/127)
Tokens 74.75% (74/99) 8.74% (74/847)

Figure 3.12: Evaluating the single rule occurrence detection heuristic

Figure 3.12 shows high precision, but, because these rules occur once, the token

recall is quite low. There are two main reasons that we find this predictor to be

insufficient. On the one hand, we find examples of frequently-occurring rules which

are incorrect, such as the rule np → vbg which appears 177 times, despite being

wrong. On the other hand, there are examples of infrequently-occurring rules which

are correct; e.g., nx → vbg nn is correct even though it occurs only three times, in

comparison to the same daughters occurring 156 times with np as mother. Of the 99

rules in our set which occur once, a full 25 of them are correct.

The first heuristic looks only at token frequency counts and does not use informa-

tion found within the variations. To identify more rule occurrences which are wrong,

we can use the properties found in a variation to define a second frequency-based

heuristic. Thus, for each variation we took the total number of token occurrences of

the daughters list and extracted all rules whose token occurrences were less than 10%

of the total. For example, there are 86 total times in the corpus where the daughters
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list nnp cc nnp nnp appears bracketed as a constituent. np (noun phrase) is the

mother 83 times and thus is likely correct, but ucp (unlike coordinated phrase) is

only a mother twice, or in 2.33% of the cases. Thus, ucp is flagged as a likely error,

and indeed it is erroneous.

As we can see in figure 3.13,55 detecting erroneous rules with this 10% metric

identifies approximately 60% of the erroneous local tree types which we want to

remove (recall). However, in terms of types of local trees, almost half of what it

detects is correct data (precision).

Precision Recall
Types 60.95% (78/128) 61.42% (78/127)
Tokens 44.28% (499/1127) 58.91% (499/847)

Figure 3.13: Evaluating the under 10% heuristic

The token results have even worse precision, being below 50%. Continuing with

the nnp cc nnp nnp example, for instance, we find one occurrence of nx as a

mother, but this is correct. And, having more of an impact, we find rules under

the 10% threshold despite being quite frequent; for example, the label nx (certain

complex noun phrases) appears 102 times as the mother of jj nn, but np appears

5972 times as the mother of the same daughters, so the correct label nx is ruled out

55One variation, for the daughters list np vp, had a mother (np) with 4297 occurrences, yet was
below the 10% threshold. Because of its extreme nature, we have removed this data point for these
results and more fully explore a heuristic with absolute counts below. The most significantly affected
number presented in 3.13 by this removal is, of course, the token precision, which would drop to
8–9%.
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by being under the 10% mark. We have dramatically improved the recall from the

first heuristic to the second, but for the reasons given here the precision has suffered

as a result.

To improve the precision, our third frequency-based heuristic also detects rules

using a 10% threshold but now uses an absolute threshold in conjunction with it, to

account for the problems stated above. Specifically, we now flag as errors those local

tree types below the 10% threshold and which also occurred less than 20 times in the

corpus. The results are given in figure 3.14, where we can see that the precision is

now higher, but the recall is again much worse.

Precision Recall
Types 64.35% (74/115) 58.27% (74/127)
Tokens 89.05% (187/210) 22.08% (187/847)

Figure 3.14: Evaluating the under 10%/under 20 heuristic

The results for these three frequency-based heuristics seem to indicate that we can

get high precision or high recall but not both for the task of automatically detecting

erroneous rules. The problems we encountered with frequency-based methods were

that there are both infrequent correct rules and frequent incorrect rules. Using only

frequencies to identify erroneous rules, therefore, can never provide us with 100%

results.

Ambiguity-based heuristic Instead of relying solely on low token frequency, we

need another property which makes detecting erroneous rules more accurate. Thus,
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we combine a token frequency measure with a measure of how likely it is for two

categories to be involved in a genuine ambiguity. For example, regardless of the

number of token occurrences within a given variation, np and nx can generally vary

between one another, since their distribution is dependent on what comes outside the

constituent. The label nx is used for noun phrases which share a modifier with another

noun phrase; if there is no shared modifier, then the identical-looking constituent is

labeled np. Both are nominals, and both often have the same set of daughters.

To use a measure of ambiguity, we need to automatically deduce which variation

pairs are acceptable variation pairs, and we do so by looking at their distribution over

all 844 variations, which the ID variation algorithm provided for the WSJ. In the case

of the np-nx pair, for instance, we see that out of the 844 variations obtained, 114

have variation between nx and np, the second-highest variation pair, as shown in

figure 3.15.

Variation pair Frequency
ADJP-NP 163
NP-NX 114
ADJP-ADVP 111
ADVP-NP 100
NP-S 95

Figure 3.15: The five most frequent variation pairs
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The numbers in figure 3.15 were derived by counting all occurrences of the pair in

question across all variations. So, for example, the daughters list nnp cc nnp nnp

has the ID variation set of np, nx, and ucp. We count each of the following pairs

once for this variation: np-nx, np-ucp, and nx-ucp.

We find that the most frequent variation pairs are indeed pairs of mothers which

can often have the same daughters list. Thus, using a frequent pairing as an indica-

tion of a potentially acceptable variation provides a way to improve erroneous rule

detection.56

For our ambiguity-based heuristic, then, we start out with the token frequency

measure, where for each variation we take the total number of occurrences of a daugh-

ters list and mark as errors all ID set elements whose token occurrences make up less

than 10% of the occurrences in their ID set. Then we further restrict the set of poten-

tial errors by eliminating all ID set categories which are among the top five categories

in variation with the most frequent category. For example, for the daughters jj nn,

because the mother label nx varies with np throughout the corpus and the two are

among the five most frequent mother categories occurring together in ID variation

sets, it is not flagged as an error.

A note is in order about how we select the pairings for a given variation—since

there are usually multiple possible pairings for a variation, for each mother we have

to systematically select which other mother to pair it with. We choose to pair every

mother in the ID variation set with the most frequent mother from that set, using

the rationale that the most frequent mother is most likely correct and thus provides

the most important pairing. For instance, in the example of the daughters list jj

56Another possibility would be to additionally calculate the probability of one mother given an-
other mother.
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nn, we have the ID variation set of adjp, intj, np, nx, and qp. The mother np

occurs most often, and thus the relevant pairings are: adjp-np, intj-np, np-nx, and

np-qp.57

The resulting precision and recall figures for automatically detecting which varia-

tions are errors with this heuristic is shown in figure 3.16. The results show a better

(type and token) precision than with error detection with a 10% threshold (3.13) and

a better token recall than with absolute thresholding (figure 3.14).

Precision Recall
Types 73.03% (65/89) 51.18% (65/127)
Tokens 65.59% (364/555) 42.98% (364/847)

Figure 3.16: Evaluating the ambiguity pair heuristic

We see this general improvement in token precision and recall because the ambi-

guity heuristic lets us sort out highly frequent rules based on something other than

frequency. For instance, in the example of the jj nn daughters, adjp occurs 25 times

as a mother but less than 10% of the time within the variation. We ignore the token

frequency count of 25, but the pairing adjp-np is the most frequent overall pairing,

so the rule is (correctly) not detected as an error. On the other hand, with the daugh-

ters list in np, the mother advp occurs 170 times, but the pairing advp-pp is not

one of the five most frequent, so this is still flagged as an error, and correctly so.

57Since the most frequent label (in this case np) is never flagged as erroneous in these experiments
(because it is always above the 10% threshold), it does not matter what we pair the most frequent
label with.
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Overall, these experiments have shown that it is difficult to decide automatically

whether a given rule used in the corpus annotation is correct or not. This fact serves

to highlight the necessity of error correction for training data for a task such as

supervised grammar induction (e.g., Charniak, 1996; Krotov et al., 1998; Klein and

Manning, 2001). However, while the ambiguity-based heuristic for spotting erroneous

rules in ID variation sets can clearly be improved, the results are encouraging enough

to try to measure the impact of removing all rules detected by this method.

3.3.4 Impact on PCFG parsing

To test the impact of erroneous rules on PCFG parsing, we used the left-corner

parser LoPar (Schmid, 2000),58 which has the nice property that, after training, one

can remove rules from the set of pairs of rules and their number of occurrences. For

these experiments, we split the WSJ into training (sections 2-21) and test (section 23)

data. We did not use the training features of LoPar, but generated the lists of rules

ourselves from the training data for parsing, as it was more transparent to remove

rules this way and LoPar allows any grammar rule files in the proper format to be

used for testing.

We used three different treebank grammars derived from the training data. The

first rule file was composed of all grammar rules from the treebank without modifi-

cation (All). The second took that set of rules and removed all rules which occurred

only once (Twice or More). And the final set of grammar rules took the original set

of all rules and removed the rules flagged by the ambiguity heuristic, as described for

58We used the unlexicalized, non-headed version. LoPar is available from
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/LoPar-en.html

103

http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/LoPar-en.html


figure 3.16 (Pairs). The resulting number of rules, as well as how many sentences out

of the 2132 sentences of 40 words or less LoPar parsed using each rule set, is given in

figure 3.17.59

Rules Sentences
All 15,246 2132
Twice or More 6470 2129
Pairs 14,798 2132

Figure 3.17: The number of rules and number of sentences LoPar was able to parse
for the three grammar rule sets

The results of parsing using these three PCFG models on the test data are given in

figure 3.18, using the standard PARSEVAL measures (Black et al., 1991), i.e., values

for bracketing precision, recall, and F-measure, for both labeled and unlabeled eval-

uation.60 Note that the values for Twice or More are after removing the 3 sentences

which LoPar could not parse.

We see an improvement in precision and recall for both heuristic methods (Twice

or More and Pairs). To see whether the improvement was due to chance or not,

we also computed the significance of the precision and recall changes using stratified

shuffling.61 Significant precision and recall changes, as compared to the All model,

59We selected sentences of 40 words or less in order to make the runtime feasible. Note that an
additional 28 sentences—all of them very short—were removed from the testing data because LoPar
stopped running while processing them. We have no explanation for why this happened, but as we
keep the data constant for all our experiments, the comparison of methods should be valid.

60Scores were computed using “evalb” by Satoshi Sekine and Michael John Collins, available at:
http://nlp.cs.nyu.edu/evalb/

61Specifically, we used the Randomized Parsing Evaluation Comparator written by Dan Bikel and
available at: http://www.cis.upenn.edu/ dbikel/software.html.
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Precision Recall Fβ=1

Lab. Unl. Lab. Unl. Lab. Unl.

All 70.39% 74.73% 67.31% 71.46% 68.82% 73.06%
Twice or More 70.97% 75.18% 68.39% 72.45% 69.66% 73.79%
Pairs *71.48% *75.68% *68.40% *72.42% 69.91% 74.01%

Figure 3.18: LoPar results using different rule sets

at the α = 0.05 level are in bold (* = at the 0.001 level), so from figure 3.18 we see

that the method which removes rules based on information present in their variations

(Pairs) performs the best, providing significant changes in both precision and recall

at the α = 0.001 level. In comparison, removing low-frequency rules (Gaizauskas,

1995; Charniak, 1996; Cardie and Pierce, 1998) by eliminating all rules which occur

only once resulted in some improvement over the All baseline, but not significantly

in the way the Pairs method does.

Removing rules in the way we have suggested gives the best performance, and this

result indicates a few things. Removing rules in a way which accounts for erroneous

data can outperform a removal of rules wherein only low-frequency rules are removed.

Since we see this increase in parsing performance by removing likely erroneous rules,

we might conclude that erroneous rules are harmful for training data. While this

result certainly gives a good indication that erroneous rules in the training data are

harmful for a parser using an induced grammar, there are a few reasons to be cautious

about this conclusion and which offer some avenues of further testing.

The first word of caution is that we are testing on data (section 23 of the WSJ)

which has not been cleaned and thus likely contains errors. As argued in section 1.2.1,

this means that we cannot be certain that these are the true results. In lieu of the
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larger task of cleaning the evaluation data, one could hand-examine a subset of the

differences between the parser output, thus allowing us to ignore sentences where

both methods were equally correct. Indeed, of the 2132 sentences, the All rules and

the Pairs rules completely agree in 1646 sentences, and only disagree in 486 cases.

The second caveat is that we ran this experiment on a subpart of the WSJ, in

order to have distinct training and testing data. The WSJ is the same corpus we used

in finding which detection methods work best in the previous section. Even though

we are now only using sections 2–21 of the WSJ for training, we have a good idea of

what to expect. While this means that this experiment was not truly blind, it also

speaks to the fact that it helps to know the nature of one’s data in order to separate

noise from exceptions. Experimenting on a variety of corpora can better demonstrate

how robust the erroneous rule identification methods are.

Related to that point, because we have switched from the full WSJ to a subset,

we also have the problem that we have not proven that the removed rules are indeed

erroneous. What we can say at this point is that removing some set of rules results in

better performance, and that the set we have removed is likely to be mostly composed

of erroneous rules. As we saw in figure 3.16, however, the error detection heuristic

using ambiguity pairs only has a type precision of 73%, so it is clear that in this

set-up we have likely removed some correct rules. In the future, one can examine the

particular removed rules to find out more about their properties.

Fourthly, it is not clear if using a different parser for this experiment would result

in better performance or not. It might be the case that these rules work well with

this particular implementation because of all the different decisions that have to be

made for each parser, e.g., the handling of unknown words, the parameter smoothing
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algorithm, and the particular search techniques. For example, because LoPar uses a

beam search technique to maintain its parsing chart, it is possible that small changes

in the rule set will have large effects, regardless of what kind of rules those are. If

a low-probability active edge is pruned from the chart, an edge it predicts might

actually have a high probability, but we will never see it. By removing rules (and

thus potential edges), we may alter/decrease the chances of this happening, but the

fact that it does happen is an effect of the parsing regime acting in conjunction with

the set of rules it has. To address this concern, one can try the same experiment

with a range of different parsers, using different search techniques. One can also

experiment with equal-sized sets of randomly-removed rules, to get a feel for whether

the differences we are seeing are attributable to the particular qualities of the rules

we have removed.

Finally, the PARSEVAL measures are imperfect and can penalize parsers very

strongly for a single attachment mistake which proliferates up the tree (Manning and

Schütze, 1999, ch. 12). Given this and other well-known problems with the standard

PARSEVAL measures (e.g. Carroll et al., 2002), we would also like to explore an

evaluation with other methods for comparing parser output.

3.4 Summary for syntactic annotation

We have demonstrated the effectiveness of error detection for treebanks using two

related methods: 1) an extension of the variation n-gram method, and 2) a method

based on variation in local tree annotation. Both of these methods search for errors

by systematically looking for inconsistencies in the data.
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We have shown how an approach to treebank error detection based on variation

n-grams can be defined and have illustrated with a case study based on the WSJ

treebank that it successfully detects inconsistencies in syntactic category annotation.

Since such inconsistencies are generally introduced by humans, our method works best

for large corpora that have been annotated manually or semi-automatically, which is

generally the case for current syntactic annotation and other high-level annotations.

We have described a symmetric, data-driven method that starts from the occur-

rence of recurring strings and searches for non-terminals that can cover these strings,

in contrast to some interannotator agreement methods (e.g. Brants and Skut, 1998).

The method handles comparisons between multiple sentences (not just two, as with

interannotator agreement) since it looks at all occurrences of a given string in parallel.

Furthermore, the approach we have presented automatically determines comparable

strings, which can be smaller or larger than a single sentence. (See section 1.3.2 for

more details on interannotator agreement.)

The second method of error detection for syntactic annotation, that of finding

inconsistent local trees, enjoys some of the same benefits. It too is symmetric, and

compares annotations over all sentences, and requires no sophisticated language tech-

nology. Furthermore, as we have shown, such a method calls into question the validity

of training on erroneous data.

Taken together, these methods serve two main purposes for treebank improve-

ment. They are a means for finding erroneous variation in a corpus, which can then

be corrected. And they provide feedback for the development of empirically ade-

quate standards for syntactic annotation, showing which distinctions are difficult to

maintain over an entire corpus.
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In the next chapter, we will see how the variation n-gram method can be extended

to treebanks which allow constituents to be non-contiguous. The method worked for

continuous syntactic annotation because for the most part such annotation relies on

local distinctions. But, as we saw in example (16), elements which are inherently

non-local, such as null elements referring to material an arbitrary distance away, can

cause problems for error detection. Discontinuous constituents inherently contain less

strict locality, through the segments of the constituent being separated over parts of

a sentence, and so it is not certain that the method will be as effective for such an

annotation. The next chapter will show that it is indeed effective.
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CHAPTER 4

DISCONTINUOUS CONSTITUENTS

4.1 Introduction

We started our error detection research in chapter 2 with annotation which is

positional in nature: each corpus position is associated with a part-of-speech tag. We

then turned to structural annotation such as that used in syntactic treebanks in chap-

ter 3, which assigns syntactic categories to contiguous sequences of corpus positions.

The next step in the variation n-gram research is to extend the method to handle

annotation which applies to corpus positions that are non-contiguous. This task is

closely related to the previous chapter—find variation for the annotation of multiple

positions, as with a constituent—with the added complication of discontinuity. Thus,

as with the last chapter, we will examine the effectiveness of the method on syntactic

annotation, but this time allowing for crossing branches. For languages with relatively

free constituent order, such as German, Dutch or the Slavic languages, the combina-

torial potential of the language encoded in constituency cannot straightforwardly be

mapped onto the word order possibilities of those languages. As a consequence, the

treebanks that have been created for German (NEGRA, Skut et al., 1997; Verbmobil,

Hinrichs et al., 2000; TIGER, Brants et al., 2002) have relaxed the requirement that
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constituents have to be contiguous. This makes it possible to syntactically annotate

the language data as such, i.e., without requiring postulation of empty elements as

placeholders or other theoretically motivated changes to the data.

Not only are discontinuous constituents used in treebanks, they are well-motivated

theoretically; the concatenation of strings underlying traditional constituency has

been rejected by researchers in a wide range of linguistic frameworks that place a

premium on the empirical reality of languages other than English, such as Depen-

dency Grammar (Bröker, 1998; Plátek et al., 2001), Tree Adjoining Grammar (Kroch

and Joshi, 1987; Rambow and Joshi, 1994), Categorial Grammar (Dowty, 1996; Hep-

ple, 1994; Morrill, 1995), linearization-based Head-Driven Phrase Structure Gram-

mar (Reape, 1993; Kathol, 1995; Richter and Sailer, 2001; Müller, 1999; Penn, 1999;

Donohue and Sag, 1999; Bonami et al., 1999), and approaches positing tangled trees

(McCawley, 1982; Huck, 1985; Ojeda, 1987; Blevins, 1990). In addition to the empir-

ical and theoretical linguistic motivation, Müller (2004) has argued that grammars

which license discontinuous constituents for languages like German should also be

preferred on computational grounds. The idea underlying his argument is that in

order to license the many word order possibilities (as, for instance, those found in the

so-called German Mittelfeld) using only continuous constituents, a large number of

rules, or equivalent specifications, are needed, resulting in a large number of passive

edges during parsing. Since there is no need to distinguish these different word or-

ders in terms of the resulting semantics, positing different rules for each order results

only in wasted computational effort (Daniels and Meurers, 2004).62 In sum, the use

62It has been argued that such different word orders correspond to (subtle) semantic differences
(see, for instance, Lenerz, 2001). However, until a theory of these differences has been worked out,
the best option is to license the indistinguishable word order variations as instances of the same
semantic form. For most computational purposes this is also likely to be sufficient in general.
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of discontinuous constituents such as found in the NEGRA (Skut et al., 1997), the

TIGER (Brants et al., 2002), and the Verbmobil (Hinrichs et al., 2000) treebanks of

German seems to be well-motivated for the syntactic annotation of the wide range of

languages with relatively free constituent order.

Discontinuous constituents are strings of words which are not necessarily contigu-

ous, yet form a single constituent with a single label, such as the noun phrase Ein

Mann der lacht in the German extraposition example (31) (Brants et al., 2002).63

(31) Ein
a

Mann
man

kommt
comes

,
,
der
who

lacht
laughs

‘A man who laughs comes.’

Treebanks allowing for crossing branches annotate Ein Mann der lacht as a sin-

gle constituent, meaning that there is intervening material which is not part of the

constituent. In a treebank only allowing for continuous constituents (as covered in

chapter 3), a null element would be inserted, allowing for a non-local reference, or

edge labels or some similar convention would be used (see section 4.2 for a discus-

sion of representing discontinuities in treebanks). When represented with crossing

branches, the discontinuous constituent can be spread out over a sentence. With

such non-locality, it is yet to be proven that an error detection method which relies

on local context for information, such as the variation n-gram method, will be useful.

In this chapter, building on Dickinson and Meurers (2005b), we present an ap-

proach to the detection of errors in discontinuous structural annotation. We focus

on syntactic annotation with potentially discontinuous constituents and show that,

once the necessary adjustments are made, the approach successfully deals with the

63The ordinary way of marking a constituent with brackets is inadequate for discontinuous con-
stituents, so we instead boldface and underline the words belonging to a discontinuous constituent.
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discontinuous syntactic annotation found in the TIGER (Brants et al., 2002) and

Verbmobil (Hinrichs et al., 2000) treebanks. In section 4.2 we discuss how discon-

tinuous constituents are represented in treebanks, outlining the scope of treebanks

to be covered by this method. In section 4.3 we turn to how the variation n-gram

method is extended to deal with discontinuities, making several adjustments for both

variation nuclei and variation n-grams. Sections 4.4 and 4.5 present results on the

TIGER and Verbmobil treebanks, respectively, the latter showing the applicability of

this method to a spoken language corpus.

There are several efficiency issues to deal with in covering discontinuous con-

stituents, but it is important to remember from the outset that finding errors in

a treebank with discontinuities is not the same task as parsing discontinuous con-

stituents. In parsing discontinuous constituents, efficiency issues are of an even greater

concern (Daniels, 2005), but here we are grounded by the analysis given in the tree-

bank. Although we will at times borrow techniques from the literature on parsing

discontinuities (e.g., for representing strings), the tasks are quite different.

4.2 Discontinuous relations in treebanks

A technique such as the variation n-gram method is applicable to corpora with a

one-to-one mapping between the text and the annotation. For corpora with positional

annotation—e.g., part-of-speech annotated corpora—the mapping is trivial given that

the annotation consists of one-to-one correspondences between words (i.e., tokens)

and labels. For corpora annotated with more complex structural information—e.g.,
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syntactically-annotated corpora—the one-to-one mapping is obtained by considering

every interval (continuous string of any length) which is assigned a category label

somewhere in the corpus.

While this works for treebanks with continuous constituents, a one-to-one map-

ping is more complicated to establish for syntactic annotation involving discontinuous

constituents (NEGRA, Skut et al., 1997; TIGER, Brants et al., 2002). In order to ap-

ply the variation n-gram method to discontinuous constituents, we need to develop a

technique which is capable of comparing labels for any set of corpus positions, instead

of for any interval.

We should first delineate the space of treebanks which we are setting out to cover.

Different encodings of treebanks require different methods for finding variation; for

this chapter, we will want to focus on treebanks with explicit crossing branches.

Null elements. Taylor et al. (2003, p. 13) discusses the handling of non-contiguous

structures in the Penn Treebank. Working with a formalism which has a context-free

backbone, they treat discontinuous constituents by means of null elements (Bies et al.,

1995, p. 107-111). Null elements are co-indexed with a non-adjacent constituent, the

idea being that in the predicate argument structure the constituent should be inter-

preted where the null element is. To this end, a class of null elements, referred to

as “pseudo-attached” elements, were developed.64 With these, the context-free struc-

ture is maintained, at the cost of inserting null elements as markers of discontinuous

relations into the text.

64One of the four null elements, *PPA* (permanent predictable ambiguity), was dropped in later
annotation projects for the Penn Treebank, namely the Switchboard corpus, since “annotators did
not reliably detect these ambiguities” (Taylor et al., 2003).
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Our error detection method has two main options for handling these kinds of

discontinuities. One option for dealing with a corpus with discontinuous constituents

realized through null elements is to handle them as we did with the regular syntactic

variation n-gram error detection method, as shown in chapter 3. However, this can

amount to ignoring all variation that could be detected through the dislocated part

of a constituent: as we mentioned in section 3.2.2, null elements need to be ignored

as variation nuclei because the variation in the annotation of a null element as the

nucleus is largely independent of the local environment. Accounting for such non-local

dependencies (represented by null elements), as we showed, increases the precision of

our method and so these “discontinuities” cannot simply be disregarded and treated

like continuous constituents.

Another option is to establish a mapping between an annotation scheme with

null elements and an annotation scheme which allows crossing branches. Then, one

can treat these structures the same way that we treat discontinuous constituents for

unordered trees (see section 4.3).

Edge labels. Another kind of approach with a context-free backbone is a treebank

annotated with topological fields. For example, the Verbmobil Treebank (Hinrichs

et al., 2000) mostly treats discontinuous constituents via edge labels, in order to

maintain a topological field analysis in which categories can be split across several

fields. To account for these edge labels in the variation n-gram error detection method,

one can define a larger set of categories, where each new category is composed of the

original category label and any possible function labels such a category can have

(e.g., np-subj, np-obj, etc.). Alternatively, one could use the edge labels to create
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an annotation scheme with crossing branches for the discontinuous constituents and

then use the method we develop in section 4.3. The simplest possibility is to ignore

edge labels completely and run the method as before, to at least catch the errors

in continuous strings. As the Verbmobil treebank also contains some discontinuous

structures, we will run the method developed in this chapter on it, ignoring edge

labels, in section 4.5.

Trees with crossing branches. We now turn our attention to treebanks which

encode discontinuities directly, i.e., by means of crossing branches. The most promi-

nent treebanks are the TIGER treebank (Brants et al., 2002), the NEGRA treebank

(Skut et al., 1997; Brants et al., 1999), and the analytic layer of the Prague Depen-

dency Treebank (PDT) (Hajičová et al., 1998; Hajič, 1998; Böhmová et al., 2003).

In these treebanks, argument structure is represented more transparently by relaxing

the definition of a linguistic tree: if a constituent is a daughter of another constituent,

it is represented directly as a daughter, whether or not it is contiguous with its sis-

ters. A method applied to such graph annotations will have to be able to deal with

constituents discontinuously realized over a sentence. We can see this graphically

in figure 4.1, where the discontinuous constituent kein Arzt der sich auskennt (’no

doctor who self is knowledgable’) crosses over several corpus positions. Given that

constituents in this representation are no longer contiguous, it is this representation

of discontinuous constituents which poses a challenge to the variation n-gram method

and will be the focus of our attention for the remainder of the chapter.
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sad , that no doctor present is , who self is versed

Figure 4.1: An example of crossing branches in the NEGRA corpus

4.3 Extending the variation n-gram method

To extend the variation n-gram error detection method for treebanks with dis-

continuous constituents, we first have to define the characteristics of a constituent

(section 4.3.1), in other words our units of data for comparison. Exploring issues

which arise in the literature on parsing with discontinuous constituents (cf. Daniels

and Meurers, 2002, 2004 and references cited therein) will help us better define con-

stituents, and by extension all variation nuclei. On the basis of this definition, we

can find identical non-constituent (nil) strings (section 4.3.2) and expand the context

into variation n-grams (section 4.3.3).

4.3.1 Variation nuclei: Constituents

Nucleus size For contiguous syntactic annotation, a variation nucleus is defined

as a contiguous string with a single label; this design decision allows the variation

n-gram method to be broken down into various runs of different constituent sizes. For
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discontinuous syntactic annotation, we are still interested in comparing cases where

the nucleus is the same. We thus will treat two constituents as having the same size

if they consist of the same number of words, regardless of the amount of intervening

material. The intervening material is then accounted for when expanding the context

into n-grams (see section 4.3.3), and we can again break the method down into runs

of different sizes.

Word order A question arises concerning the word order of elements in a con-

stituent. Consider the German subordinate clause example (32) (Müller, 2004).

(32) weil
because

der
the

Mann
mannom

der
the

Frau
womandat

das
the

Buch
bookacc

gab.
gave

‘because the man gave the woman the book.’

The three arguments of the verb gab (’give’) can be permuted in all six possible

ways and still result in a well-formed sentence. It might seem, then, that we would

want to allow different permutations of nuclei to be treated as identical. If das Buch

der Frau gab (’gave the book to the woman’) is a constituent in another sentence, for

instance, it should have the same category label as der Frau das Buch gab, regardless

of the ordering of the elements.

Putting all permutations into one equivalence class, however, amounts to stating

that all orderings are always the same. But even “free word order” languages are

more appropriately called free constituent order; for example, in (32), the argument

noun phrases can be freely ordered, but each argument noun phrase is an atomic unit,

and in each unit the determiner precedes the noun.
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Since we want our method to remain data-driven and order can convey information

which might be reflected in an annotation system, we keep strings with different orders

of the same words distinct, i.e., ordering of elements is preserved in our method.65

String representations In terms of representing the discontinuous constituent

string, Johnson (1985) presents two logically equivalent representations in the realm

of parsing: interval lists and bitvectors. Interval lists are lists of the locations of

the parts of the constituent, and bitvectors represent positions with either a one for

an occupied position or a zero for a position not occupied by this constituent. For

example, the Guugu Yimidhirr sentence in (33),66 taken from Johnson (1985), con-

tains a discontinuous constituent, Yarraga-aga-mu-n biiba-ngun (’the boy’s father’).

Assuming the sentence spans from position 0 to position 4, this noun phrase can be

represented by an interval as in (34a) or as a bitvector as in (34b). The advantage

of the bitvector notation is that many bitvector operations—which are needed for

parsing operations—can be calculated in constant time (Daniels and Meurers, 2002).

(33) Yarraga-aga-mu-n
boy-GEN-mu-ERG

gudaa
dog-ABS

gunda-y
hit-PAST

biiba-ngun
father-ERG

‘The boy’s father hit the dog.’

(34) a. [[0, 1], [3, 4]]

b. 1001

For our purposes, a version of a bitvector encoding is convenient to store the

coverage of a variation nucleus within a sentence, and so we choose this representation.

Since we have to account for the coverage of the nucleus and of the n-gram, in addition

65Preliminary inspection of the nuclei of size two shows that by preserving word order we lose
very few examples. Of 26 nuclei pairs which appear in both orders, five would add new variation
with free word order, and none of these five provide any new non-fringe variation n-grams.

66GEN = ’genitive’, ERG = ’ergative’, ABS = ’absolutive’.
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to positions not yet covered within the span of the string, we distinguish three values

for each position in our vector: 1 denotes a position in the nucleus, X a position

in the context, and 0 a position not (yet) included in the n-gram.67 An example

is given in (35), where sich einig is the nucleus, seien sich Bonn einig is the full

n-gram (4-gram), and und London nicht is not yet in the context. (See (36) for the

full context of this example.)

(35) a. seien
are

sich
self

Bonn
Bonn

und
and

London
London

nicht
not

einig

agreed

b. X1X0001

4.3.2 Variation nuclei: Non-constituents

The basic idea is to compare a string annotated as a constituent with the same

string found elsewhere—whether annotated as a constituent or not. So we need to

develop a method for finding all string occurrences not analyzed as a constituent (and

assign them the special category label nil). Following the discussion in chapter 3, we

only look for non-constituent occurrences of those strings which also occur at least

once as a constituent. But do we need to look for discontinuous nil strings or is it

sufficient to assume only continuous ones? Consider the TIGER treebank examples

(36).

(36) a. in
on

diesem
this

Punkt
point

seien
are

sich
self

Bonn
Bonn

und
and

London
London

nicht
not

einig
agreed

.

.

‘Bonn and London do not agree on this point.’

67We only explicitly use 0 for positions within the span of the n-gram, i.e., all material between
the leftmost and rightmost elements of the n-gram (inclusive).
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b. in
on

diesem
this

Punkt
point

seien
are

sich
self

Bonn
Bonn

und
and

London
London

offensichtlich
clearly

nicht einig
not agreed

.

.

In example (36a), sich einig (’self agree’) forms an adjective phrase (ap) con-

stituent. But in example (36b), that same string is not analyzed as a constituent,

despite being in a nearly identical sentence. We would like to assign the discontinuous

string sich einig in (36b) the label nil, so that the labeling of this string in (36a) can

be compared to its occurrence in (36b).

In consequence, our approach should be able to detect nil strings which are

discontinuous—an issue which requires special attention to obtain an algorithm effi-

cient enough to handle large corpora.

Use sentence boundary information The first consideration makes use of the

fact that syntactic annotation by its nature respects sentence boundaries. In con-

sequence, we never need to search for nil strings that span across sentences. This

restriction clearly is syntax specific and other topological domains need to be iden-

tified to make searching for nil strings tractable for other types of discontinuous

annotation.

Use tries to store constituent strings The second consideration concerns how

we calculate the nil strings. To find every non-constituent string in the corpus,

discontinuous or not, which is identical to some constituent in the corpus, a basic

approach would first generate all possible strings within a sentence and then test to

see which ones occur as a constituent elsewhere in the corpus. For example, if the

sentence is Nobody died when Clinton lied, we would see if any of the 31 subsets of
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strings occur as constituents (e.g., Nobody, Nobody when, Clinton lied, Nobody when

lied, etc.). But such a generate and test approach clearly is intractable given that it

generates generates 2n − 1 potential matches for a sentence of n words.

Instead of searching for constituents based on strings, we instead split the task

of finding nil strings into two runs through the corpus and look for nil strings

based on constituents. In the first, we store all constituents in the corpus in a trie

data structure (Fredkin, 1960), with words as nodes. In the second run through the

corpus, we attempt to match the strings in the corpus with a path in the trie, thus

identifying all strings occurring as constituents somewhere in the corpus. At each

node of the trie, either a path is found to a node for the next word in the sentence

or the search is stopped. Continuing our example, if in searching through the trie we

look for Nobody when and find no path from Nobody to when, then we stop the search

without having to consider Nobody when lied. Using a trie dramatically increases the

speed of computation; for a corpus of 40,000 sentences, generating all nil strings took

approximately fifteen minutes.

Filter out unwanted nil strings The final consideration removes “noisy” nil

strings from the candidate set. Certain nil strings are known to be useless for detect-

ing annotation errors, so we should remove them to speed up the variation n-gram

calculations. Consider example (37) from the TIGER corpus, where the continuous

constituent die Menschen is annotated as a noun phrase (np).

(37) Ohne
without

diese
these

Ausgaben,
expenses

so
according to

die
the

Weltbank,
world bank

seien
are

die Menschen
the people

totes
dead

Kapital
capital

‘According to the world bank, the people are dead capital without these expenses.’
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Our basic method of finding nil strings would detect another occurrence of die Men-

schen in the same sentence since nothing rules out that the other occurrence of die in

the sentence (preceding Weltbank) forms a discontinuous nil string with Menschen.

Comparing a constituent with a nil string that contains one of the words of the con-

stituent clearly goes against the original motivation for wanting to find discontinuous

strings, namely that they show variation between different occurrences of a string.

To prevent such unwanted variation, we eliminate occurrences of nil-labeled

strings that overlap with identical constituent strings from consideration. Two iden-

tical nil strings which overlap, on the other hand, are not ruled out because we do

not know in advance which nil value should correspond to some constituent string

in another sentence, and with multiple nil values in the same sentence, there is no

variation within that sentence.68 Removing these noisy non-constituent strings from

consideration will improve the efficiency of calculating variation n-grams, as will be

described shortly.

4.3.3 Variation n-grams

The more similar the context surrounding the variation nucleus, the more likely

variation in the annotation of a nucleus is an error. For syntactic annotation with

proper tree structures (see section 3.1), the context was defined simply as being

elements to the right and the left because the nuclei were contiguous units. When

nuclei can be discontinuous, however, there can also be internal context, i.e., elements

which appear between the words forming a discontinuous variation nucleus.

68This filter may be less desirable for other kinds of discontinuous annotation, such as co-reference
annotation, where a word may be in relation to more than one constituent.
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Parsers for continuous constituents often attempt to tackle the input string in a

left-to-right or right-to-left fashion. As Kasper et al. (1998) point out, for grammars

with discontinuities, “a strict left-to-right or right-to-left approach may be less ef-

ficient than a bidirectional or non-directional approach.” In like fashion, as in our

earlier work, an instance of the a priori algorithm is used to expand a nucleus into a

longer n-gram by stepwise adding context elements. Where previously it was possible

to add an element to the left or the right, we now also have the option of adding it

in the middle—as part of the new, internal context. But depending on how we fill

in the internal context, we can face a serious tractability problem. Given a nucleus

with j gaps within it, we need to potentially expand it in j + 2 directions, instead of

in just 2 directions (to the right and to the left).

For example, the potential nucleus was werden (’what becomes’) appears as a verb

phrase (vp) in the TIGER corpus in the string was ein Seeufer werden (’what a coast

of a lake becomes’), as in (38a); elsewhere in the corpus was and werden appear in

the same sentence with 32 words between them, as in (38b).

(38) a. was
what

ein
a

Seeufer
coast of a lake

werden
becomes

b. was
what

in
in

. . . ein

. . . a
. . .mittragen
. . . jointly carry

werden
will

The chances of one of the middle 32 elements matching something in the internal

context of the vp is relatively high, and indeed the twenty-sixth word is ein. However,

if we move stepwise out from the nucleus in order to try to match was ein Seeufer

werden, the only options are to find ein directly to the right of was or Seeufer directly

to the left of werden, neither of which occurs, thus stopping the search.
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In conclusion, we obtain an efficient application of the a priori algorithm by ex-

panding the context only to elements which are adjacent to an element already in

the n-gram. Note that this was already implicitly assumed for the left and the right

context, used in chapter 3 for ordinary syntactic annotation.

There are two other efficiency-related issues worth mentioning. Firstly, as with the

variation nucleus detection, we limit the n-grams expansion to sentences only. Since

the category labels do not represent cross-sentence dependencies, we gain no new

information if we find more context outside the sentence, and in terms of efficiency,

we cut off what could potentially be a very large search space.69 In the TIGER

corpus, for example, stopping n-grams at sentence boundaries prevents expanding a

nucleus to a variation 1705-gram.

Secondly, the methods for reducing the number of variation nuclei discussed in

section 4.3.2 have the consequence of also reducing the number of possible variation

n-grams. For example, in a test run on the NEGRA corpus, we allowed identical

strings to overlap; this generated a variation nucleus of size 63, with 16 gaps in it,

varying between np and nil within the same sentence. Fifteen of the gaps can be

filled in and still result in variation. The filter for unwanted nil strings described in

the previous section eliminates the nil value from consideration. Thus, there is no

variation and no tractability problem in constructing n-grams.

69Note that similar sentences which were segmented differently could potentially cause varying
n-gram strings not to be found. For example, in one part of the TIGER corpus FRANKFURT A.
M. ( dpa ) . is a sentence, while in another part FRANKFURT A. M. and ( dpa ) . are separate
sentences. We think that such errors are best treated in a separate sentence segmentation error
detection phase.
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Generalizing the n-gram context

So far, we assumed that the context added around variation nuclei consists of

words. As with syntactic annotation, given that treebanks generally also provide

part-of-speech information for every token, we experimented with part-of-speech tags

as a less restrictive kind of context. The idea is that it should be possible to find

more variation nuclei with comparable contexts if only the part-of-speech tags of the

surrounding words have to be identical instead of the words themselves. As we will

see in section 4.4, generalizing n-gram contexts in this way indeed results in more

variation n-grams being found, i.e., increased recall.

4.3.4 Adapting the heuristics

To determine which nuclei are errors, we can build on the two heuristics discussed

in previous chapters—trust long contexts and distrust the fringe—with some modifi-

cation, given that we have more fringe areas to deal with for discontinuous strings. In

addition to the right and the left fringe, we also need to take into account the internal

context in a way that maintains the non-fringe heuristic as a good indicator for errors.

As a solution that keeps internal context on a par with the way external context is

treated in previous chapter, we require one word of context around every terminal

element that is part of the variation nucleus. As discussed below, this heuristic turns

out to be a good predictor of which variations are annotation errors; expanding to

the longest possible context, as in chapter 2, is not necessary.
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4.4 Results on the TIGER Corpus

We ran the variation n-gram error detection method for discontinuous syntactic

constituents on the TIGER corpus, version 1.0 (Brants et al., 2002), a corpus of

712,332 tokens in 40,020 sentences. The method detected a total of 10,964 variation

nuclei. From these we sampled 100 to get an estimate of the number of errors in

the corpus which concern variation.70 Of these 100, 13 variation nuclei pointed to

an error; with this point estimate of .13, we can derive a 95% confidence interval of

(0.0641, 0.1959), which means that we are 95% confident that the true number of

variation-based errors is between 702 and 2148. The effectiveness of a method which

uses context to narrow down the set of variation nuclei can be judged by how many

of these variation errors it finds.

Based on the usefulness of the non-fringe heuristic in chapters 2 and 3, we selected

the shortest non-fringe variation n-grams to examine. Occurrences of the same strings

within larger n-grams were ignored, so as not to artificially increase the resulting set

of n-grams. (See section 3.2.2 for a full discussion of evaluation methods.)

When the context is defined as identical words, we obtain 500 variation n-grams.

Sampling 100 of these and labeling for each position whether it is an error or an

ambiguity, we find that 80 out of the 100 samples point to at least one token error.

The 95% confidence interval for this point estimate of .80 is (0.7216, 0.8784), so we are

95% confident that the true number of error types is between 361 and 439. Note that

70Special thanks to George Smith and Robert Langner of the TIGER team at the University of
Potsdam for evaluating our results.
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the precision of 80% is better than the estimates for continuous syntactic annotation

of 67% (with null elements) and 76% (without null elements), obtained for the shortest

variation n-grams in figure 3.11. The results are summarized in figure 4.2.

Context Precision Errors

WSJ (Continuous) Word 67–76% 2291–3022
POS 52% 3830–5607

TIGER (Discontinuous) Word 80% 361–439
POS 52% 632–926

Figure 4.2: Accuracy rates for the different contexts

When the context is defined as identical parts of speech, we obtain 1498 variation

n-grams. Again sampling 100 of these, we find that 52 out of the 100 point to an

error, and the 95% confidence interval for this point estimate of .52 is (0.4221, 0.6179),

giving a larger estimated number of errors, between 632 and 926. It is noteworthy

that 483 of the examples were supersets of examples in the word context cases; thus,

by running only the POS context method, one can find most of the variations that

were found with the word contexts, namely 483 of the 500 variations.71

Words can convey more information than part-of-speech tags, and so we see a drop

in precision when using part-of-speech tags for context, but these results highlight a

very practical benefit of using a generalized context. By generalizing the context, we

maintain a precision rate of approximately 50%, and we substantially increase the

71The reason that 17 cases are not found by the POS context method is that there is variation in
how the surrounding context is tagged; we have not tested whether this is more or less indicative of
an error.
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recall of the method. There are, in fact, likely twice as many detected errors when

using POS contexts as opposed to word contexts. These results, then, support the

trends observed for regular syntactic annotation in section 3.2.2 and summarized in

figure 4.2: a drop in precision to approximately 50% accompanied a huge gain in the

number of errors found. Corpus annotation projects willing to put in some extra effort

thus can use this method of finding variation n-grams with a generalized context to

detect and correct more errors.

Given that the results were so similar to those obtained for continuous syntactic

annotation in the general percentages,72 one can ask if the extra work for discon-

tinuities was necessary. We have to ask if the examples we derived were actually

discontinuous or not. Of the 500 word context cases, 125 (25%) involved a disconti-

nuity in at least one of the occurrences, and 157 (10%) of the 1498 POS context cases

involved a discontinuity. Of the 100 samples of each, 15 of 19 examples involving

discontinuities for the word context and 10 of 11 examples for the POS context were

erroneous. While there are certainly more continuous constituents than discontinu-

ous in the corpus, these numbers show that accounting for discontinuous labeling is

important in such a corpus.

72As shown in figure 4.2, the absolute number of errors found is different, but there are several
factors we can attribute this to: difference in corpus sizes (1.2 million (WSJ) vs. 700,000 (TIGER),
differences between English and German, and, perhaps most importantly, differences in the original
quality of the annotation.
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4.5 Spoken language corpora

Spoken language differs in many respects from written language, but the issue of

error detection in spoken language corpora has not been well addressed.73 This is

significant since spoken data is increasingly relevant for linguistic and computational

research, and such corpora are starting to become more readily available, as illustrated

by the holdings of the Linguistic Data Consortium (http://www.ldc.upenn.edu). We

address this issue here in a pilot study based on Dickinson and Meurers (2005a), using

the German Verbmobil treebank (Hinrichs et al., 2000) as an exemplar of a spoken

language corpus and one which contains discontinuous constituents. We discuss the

properties of such corpora which are relevant when adapting the variation n-gram

approach to spoken language corpora. We also use this smaller corpus to test the

utility of using sentence boundaries for detection.

4.5.1 The Verbmobil corpus

For our experiments, we used 24,901 sentences (248,922 tokens) of the German

Verbmobil corpus (Hinrichs et al., 2000).74 This corpus is domain-specific, consisting

of transcripts of appointment negotiation, travel planning, hotel reservation, and

personal computer maintenance scenarios.The speech was segmented into dialog turns,

in order to take into account repetitions, hesitations, and false starts; these are akin

to sentences found in written language, but dialog turns “may consist of one or more

sentences in the grammatical sense” (Stegmann et al., 2000, p. 22).

73See section 2.3.1, though, for some issues arising for error detection regarding spoken language
corpora with respect to POS annotation.

74Specifically, we used the treebank versions of the following Verbmobil CDs: CD15, CD20, CD21,
CD22, CD24, CD29, CD30, CD32, CD38, CD39, CD48, and CD49.
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The annotation of the Verbmobil corpus consists of tree structures with node and

edge labels (Stegmann et al., 2000). The node labels refer to one of four different levels

of syntactic annotation: the highest level of nodes specify the turn type; field-level

nodes give topological field names; phrase-level nodes indicate syntactic categories;

and lexical-level nodes encode the part-of-speech using the Stuttgart-Tübingen TagSet

(STTS, Schiller et al., 1995; Thielen and Schiller, 1996). Thus, the node labels in the

tree encode both syntactic category and topological field information. Edge labels on

the phrase level encode grammatical functions.

While many structures annotated using crossing branches in other corpora, such

as TIGER (Brants et al., 2002) are encoded in the Verbmobil corpus using edge labels,

the Verbmobil corpus does contain some discontinuous structures, i.e., category labels

applying to a non-contiguous string. The discontinuities were often over punctuation,

which is unattached in the corpus. Thus, we ran the version of the variation n-

grams method for syntactic annotation that is suitable for handling discontinuous

constituents, as described in section 4.3 above.

Before turning to a discussion of the results of running the resulting algorithm on

the Verbmobil corpus, there are two interesting aspects of the corpus that should be

discussed, given that they are typical for such a spoken language corpus and directly

affect the variation n-gram error detection method. The first is repetition, arising

because people engaged in a dialogue on a specific topic tend to express the same

contents; thus, one encounters the same strings again and again in a corpus. For

example, one finds 35 instances of (39) in the Verbmobil corpus, with guten Tag
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labeled 33 times as dm/nx (discourse marker dominating a noun phrase)75 and twice

as nil (non-constituent). This kind of repetition is readily exploited by the variation

n-gram approach.

(39) ,
,

guten Tag

good day

,
,
Frau
woman

‘Hello, Ms. . . . ’

A different kind of recurrence, however, is that of identical words appearing next

to each other, often caused by hesitations and false starts. For example, we find the

unigram und ’and’ in the middle of the trigram und und Auto, as in (40).

(40) und
and

und
and

Auto
car

The problem with such examples is that with the same word being repeated, the

surrounding context is no longer informative: it results in differences in context for

otherwise comparable variation n-grams, as well as the opposite, making contexts

comparable which otherwise would not be. False starts and hesitations involving

single words can be identified and filtered out prior to error detection, but longer

false starts are difficult to detect and can be confusable with ordinary sentences that

should not be filtered out, such as in the English he said he said hello.

4.5.2 Results

Turning to the results, in our first experiment we started with the version of the

variation n-gram algorithm for discontinuous constituents that uses the boundaries of

the largest syntactic units as stopping points for n-gram expansion to ensure efficient

processing. As shown in Figure 4.3, this resulted in 9174 total variation nuclei.

75As discussed at the end of section 4.5.2, we collapse unary branches into a single label.
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From this set, we extract the shortest non-fringe variation nuclei, thereby ignoring

occurrences of the same strings within larger n-grams. This resulted in 1426 shortest

non-fringe variation nuclei.

size nuclei non-fringe nuclei size nuclei non-fringe nuclei

1 1808 897 8 47 2
2 2777 252 9 26 1
3 2493 135 10 12 1
4 1223 80 11 6 0
5 482 35 12 3 0
6 200 13 13 1 0
7 95 10 14 1 0

Figure 4.3: Number of variation nuclei in the Verbmobil corpus

It is useful to compare this result to that obtained for the newspaper corpus

TIGER (Brants et al., 2002), as described in section 4.4. The Verbmobil corpus is

roughly one-third the size of the TIGER corpus, but we obtained significantly more

shortest non-fringe variation nuclei for the Verbmobil corpus (1426) than for TIGER

(500), indicating that the Verbmobil corpus is more repetitive and/or includes more

variation in the annotation of the repeated strings. This supports the reasoning in

section 4.5.1 that the variation n-gram approach is well-suited for domain-specific

spoken language corpora, such as the Verbmobil corpus.
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The effect of dialog turn boundaries

In another experiment, we explored the effect of using the boundaries of the largest

syntactic units in the corpus, i.e., the dialog turn boundaries, as stopping points for n-

gram expansion. Allowing variation n-grams to extend beyond a dialog turn resulted

in 1720 cases, i.e., 20% more than in our first experiment, where variation detection

was limited to a single dialog turn; a complete breakdown is given in Figure 4.4. In

conclusion, the second experiment shows that repeated segments frequently go beyond

a dialog turn so that error detection for spoken language corpora should ignore dialog

turn boundaries.

size nuclei non-fringe nuclei size nuclei non-fringe nuclei

1 1808 1081 8 47 2
2 2777 307 9 26 1
3 2493 169 10 12 1
4 1223 95 11 6 0
5 482 39 12 3 0
6 200 14 13 1 0
7 95 11 14 1 0

Figure 4.4: Number of variation nuclei, ignoring dialog turn boundaries

The effect of punctuation

Finally, in a third experiment, we investigated the role of punctuation, which

had been inserted into the transcribed speech of the Verbmobil corpus. We removed

all punctuation from the corpus and reran the error detection code (in the version

ignoring dialog turn boundaries). This resulted in 1056 shortest non-fringe variation
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nuclei, a loss of almost 40% of the detected cases compared to the second experiment.

The punctuation inserted into the corpus thus seems to provide useful context for

detecting variation n-grams.

However, even though punctuation appears to be useful in finding more variations,

punctuation symbols are not always reliable indicators of identical context. To illus-

trate this, let us examine some different uses of the comma. In (41), we find commas

delimiting elements of an enumerated list, and thus Freitag (’Friday’) forms a noun

phrase (nx) by itself.

(41) das
that

wäre
would be

Donnerstag
Thursday

,
,

Freitag

Friday

,
,
Samstag
Saturday

.

.

In example (42), on the other hand, we have a comma being used in a date

expression. In this case, Freitag correctly forms part of the larger noun phrase Freitag

den achten Mai (’Friday, the eighth of May’), where the comma is used to separate

the day from the month.

(42) ab
from

achten
eighth

Mai
May

,
,

Freitag

Friday

,
,
den
the

achten
eighth

Mai
May

,
,
hätte
would’ve

ich
I

für
for

vier
four

Tage
days

Zeit
time

The comma and other punctuation thus are potentially ambiguous tokens, with

different uses and meanings, essentially on a par with ordinary word tokens—an

observation which is not specific to spoken language but equally applies to written

language corpora.

The effect of the annotation scheme

Turning to the annotation scheme used in the Verbmobil corpus and its effect on

error detection using the variation n-gram detection method, there are two issues that

deserve some attention: non-local category distinctions and the role of topological

fields.
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Non-local distinctions Clearly the most serious problem for our error detection

method (and for most algorithms for corpus annotation) are category distinctions

which are inherently non-local. We use the non-fringe heuristic to isolate variation

n-grams for analysis, but some nuclei cannot be reliably disambiguated using the

local context. For example, the nucleus fahren (’drive’) in the 4-gram given in (43)

is ambiguous; in (44) it is a finite verb (vxfin), but it is a non-finite verb (vxinf) in

(45).

(43) nach
to

Hannover
Hannover

fahren
drive

.

.

‘to drive to Hannover’

(44) daß
that

wir
we

am
on

Mittwoch
Wednesday

und
and

Donnerstag
Thursday

nach
to

Hannover
Hannover

fahren
drive

.

.

‘that we drive to Hannover on Wednesday and Thursday.’

(45) Wir
we

wollten
wanted

nach
to

Hannover
Hannover

fahren
drive

.

.

‘We wanted to drive to Hannover.’

In (44), fahren (’drive’) is a finite verb in third person singular, occurring in a de-

pendent clause. In (45), on the other hand, the verb wollten (’wanted’) is the finite

verb in a declarative sentence and it selects the infinitival fahren (’to drive’). The

problem is that looking solely at fahren and its local context, it is not possible to

determine whether one is dealing with the finite or the non-finite form since the finite

verb in a declarative sentence like (45) typically occurs as the second constituent of a

sentence, which is arbitrarily far away from the non-finite verbs typically found at the

right edge of a sentence. To be able to distinguish such cases, the variation n-gram

detection method thus would need to be extended with a more sophisticated notion

of disambiguating context that goes beyond the local environment.
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Topological fields When we introduced the annotation of the Verbmobil corpus in

section 4.5.1, we mentioned that the annotation includes topological field information.

The topological field labels encode the general word order properties of the entire

sentence, not the properties of a word and its local context. As a result, they can

cause problems similar to the just discussed non-local category distinctions. For

example, the complementizer field C is described as follows in the manual: “The C-

position only occurs in verb-final clauses” (Stegmann et al., 2000, p. 11), but whether

a clause is verb-final or not is a property of the sentence, not of the C field itself.

A second issue involving the topological fields arises from the fact that the anno-

tation scheme includes two kinds of non-terminal nodes: field-level nodes that bear

topological field labels and phrase-level nodes with syntactic category labels. This has

the effect that some phrases are dominated by phrases, whereas others are dominated

by fields—but clearly one does not want to compare field labels with category labels.

A case where this becomes directly relevant to the detection of annotation errors

is the treatment of unary branches in the syntactic annotation. Since both nodes

in a unary branching tree dominate the same terminal material, we proposed in

section 3.2.1 that such unary branches are best dealt with by folding the two category

labels into a single category. For example, an np (noun phrase) dominating a qp

(quantifier phrase) in the WSJ corpus is encoded as a node of category np/qp. Such

folding can involve any non-terminal node dominating a single non-terminal daughter,

so that in the Verbmobil corpus it can also combine a topological label with a syntactic

category label. For instance, we find nf/nx for a Nachfeld (nf, used for extraposed

material) dominating a noun phrase (nx).
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Such labels combining field and syntactic category information can cause prob-

lems by introducing artificial variation. Consider, for example, a variation nucleus

involving je nachdem (’depending on’) in (46), which varies between px (preposi-

tional phrase) and vf/px (Vorfeld, i.e., fronted material, dominating a prepositional

phrase).

(46) und
and

je nachdem

depending on

,
,

This sort of variation is perfectly acceptable, i.e., not an error, since the topological

field (Vorfeld) refers to where the prepositional phrase is placed in the sentence and

thus is only indirectly related to the internal properties of the px. For the purpose of

our error detection approach, we thus need to keep the topological field nodes clearly

distinct from the syntactic category nodes.

Finally, the issue of the topological field information included in the annotation

of the Verbmobil corpus highlights that it is important to understand the nature of

the corpus annotation scheme when porting the variation n-gram method to a new

type of annotation scheme.

4.5.3 Summary for spoken language

As our pilot study on the German Verbmobil corpus indicates, the variation n-

gram method seems well-suited for detecting errors in the annotation of such corpora

given that repetitions are prevalent in domain-specific speech. At the same time,

error detection in spoken language corpora requires special attention to the role of

segmentation, inserted punctuation, and particularly the nature of repetition and its

causes.
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In the future, we plan on fully evaluating the number of errors detected by the

method, after identifying and removing the problematic patterns mentioned above.

We would also like to apply the method to other layers of annotation in the German

Verbmobil corpus, such as part-of-speech annotation, and to test the general applica-

bility of the insights we gained from working with the Verbmobil corpus by applying

the method to other spoken language corpora, e.g., the ATIS corpus (Hemphill et al.,

1990).

4.6 Summary for discontinuous annotation

In this chapter we have described a method for finding errors in corpora with

graph annotations. We showed how the variation n-gram method can be extended

to discontinuous structural annotation. We showed how this can be done efficiently

and with as high a precision as we obtained for continuous syntactic annotation. Our

experiments with the TIGER corpus confirm the results from chapter 3 that general-

izing the context to part-of-speech tags can increase recall and that this method can

have a substantial practical benefit when preparing a corpus with discontinuous anno-

tation. Furthermore, our work on the Verbmobil corpus indicates that the variation

n-gram method can successfully be applied to spoken language corpora.

By applying the method to three different kinds of annotation—positional, struc-

tural, and graph—we are now in a position to state what must be true of a corpus

for the method to work. First, there must be some discrete element or group of ele-

ments which maps to a single annotation; these elements can then be defined as the

variation nucleus.
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Secondly, there must be some sort of disambiguating context. We initially de-

fined this as identical words and then backed off to identical parts of speech, as both

words and parts of speech are relevant for disambiguating the morphosyntactic anno-

tations we have examined. But the context need not be so restrictive. We could have

used features akin to those used in part-of-speech taggers, such as the preceding and

following two tags and defined a distance metric threshold where two elements are

considered the “same,” using techniques developed for, e.g., memory-based learning

(Daelemans et al., 1996, 1999). By using more general features, which approximate

the features used in the NLP task the corpus is generally used for, we will better be

able to extend the method to other forms of annotation.

Extending the error detection method to handle discontinuous constituents, as we

have done in this chapter, has significant potential for future work given the increas-

ing number of free word order languages for which corpora and treebanks are being

developed. In addition to their use in syntactic annotation, discontinuous structural

annotation is also relevant for semantic and discourse-level annotation—essentially

any time that graph structures are needed to encode relations that go beyond or-

dinary tree structure. Such annotations are currently employed in the mark-up for

semantic roles (Kingsbury et al., 2002) and multi-word expressions (Rayson et al.,

2004), as well as for the annotation of spoken language corpora or corpora with

multiple layers of annotation (Blache and Hirst, 2000). Future explorations of the

variation n-gram method can be applied to these kinds of annotation, but the method

will only be effective if the heuristics and the notion of context are adapted. The vari-

ation n-gram notion of context works for POS and syntactic annotations because the
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immediately surrounding context gives an indication of the morphosyntactic proper-

ties of the focus word, or string, and it is these properties which are being labeled.

The context also serves to disambiguate the semantic properties of a string, but it is

less clear how this is to be exploited.

Having explored the variation n-gram method for detecting errors in three kinds

of annotation with varying levels of complexity, we turn in the next two chapters to

methods for automatically correcting these errors. With the precision for detection

as high as it is, there is less of a need for automatic correction, given that manual

correction of errors detected with high precision is feasible for the gold-standard

annotation we have been focusing on. However, by exploring methods for correction

we can gain insight into the properties of the corpus and of the methods, and we can

speed up the correction process.
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CHAPTER 5

AUTOMATIC CORRECTION OF VARIATION ERRORS

5.1 Introduction

Having successfully detected errors for various levels of annotation in chapters 2,

3, and 4, we turn now to methods for correcting these errors. Since we detected types

of strings which are wrongly annotated, the process of correction involves two steps:

1) detecting the exact tokens which are erroneous, and 2) assigning a correct label

for erroneous tokens. We will conflate the two steps into one, but we will return to

this issue in section 6.5.

Errors which are variations in the annotation of a corpus, as we have detected, stem

from the property of natural language being ambiguous. The problem of ambiguity

is that more than one label may in general be possible for a given string (word or

sequence of words). The context narrows down the possibilities of labels to only one

(or a few). For part-of-speech annotation, the usage of a word in a sentence generally

determines the label, and so classifiers76 trained on the surrounding context of tags

are able to automatically disambiguate the annotation to a single label with high

76We will use the term classifier to refer to any technology which assigns a class to a data point
(e.g., a word).
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accuracy. With that in mind, we can use classifiers to aid in automatic or semi-

automatic corpus correction, using the variation n-gram output for error detection as

our starting point.

Because we are looking at classifier-based correction, this is in principle appli-

cable to any annotation for which a label can be given to a sequence of text. We

choose to use the simplest kind of annotation discussed so far, that of part-of-speech

annotation (see chapter 2), for our experiments in correction; we expect non-trivial

modifications for non-positional annotations, but some aspects are easily extendible

(see section 6.6).

Before setting out to correct, we need to address the motivation for automatic or

semi-automatic correction. It can be argued that only manual correction is desirable

for fixing a corpus, at least for a gold standard corpus. In the first place, we could

lose the original corpus information, which could be useful to researchers. Some

researchers may want to use data which contains errors to ensure that their methods

are robust enough to handle such errors. In the second place, and more importantly,

anything less than 100% accuracy in correction of the data is insufficient. Having new,

consistent errors may be worse than the original situation of having errors which could

at least be found using their inconsistent properties. Why, then, should we bother to

automatically correct a corpus?

The first point to make is that the information about errors originally present in

the corpus does not have to be lost. With annotation setups such as XML in wide

use, it is easy to incorporate multiple layers of annotation within the same corpus, or

to use standoff annotations (e.g., Bird and Liberman, 2000). Thus, both the original

annotation and the corrected annotation can co-exist in the corpus, and researchers
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can choose which to use. If they do not trust the corrected annotation or if they

wish to use erroneous data to test the robustness of their methods, they can use the

original data.

The second objection, that of not being able to obtain 100% accuracy, is a more

serious one. It is likely that our experiments will fall short of 100% accuracy, but

that does not negate their value. It is true that automatic correction software must

be used with care, but this is true of any software in use for corpus creation. Large

corpora require semi-automated methods of annotation to begin with, and automatic

tools must be used sensibly at every stage in the corpus building in order to ensure an

accurate corpus. Automated annotation methods are not perfect, but humans also

add errors, from biases and inconsistent judgments; a benefit of the variation n-gram

method for error detection is that it shows where humans had a hard time making

consistent decisions and where corpus annotation standards need strengthening.

Automatic correction can be used in conjunction with manual checking, but in this

chapter we will see how far automatic methods for correction can get us. The problem

that the variation n-gram error detection shows us is one of inconsistency, and using

classifiers to correct such errors is in keeping with the idea in van Halteren (2000) that

automatic tagging methods can be used to enforce consistency. Automatic correction

can also inform us about the task of classification; adapting POS tagging technology

for correction offers insights into the general process of tagging. Pushing the limits

of automatic correction, then, will be the goal of this chapter.

In the next chapter, we will explore sorting the output of the automatic correction

methods developed in this chapter. If we can distinguish automatically correctable

tags from tags needing human assistance to correct, then we can obtain some degree
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of automaticity. Furthermore, since we here conflate the tasks of token error detection

and correction, we can also view the work in this chapter as token error detection.

That is, the variation n-gram method tells us the type of error which is wrong,

pointing to at least two corpus positions, only one of which might be wrong. By

identifying the corpus positions in the benchmark corpus that a part-of-speech tagger

disagrees with, we can pinpoint the specific positions which are erroneous.

The outline of the rest of the chapter is as follows: in section 5.2 we first discuss

our methodology, specifically how to evaluate corpus correction work in light of the

fact that we have no benchmark corpus to compare to—we are correcting the so-

called “gold standards.” In section 5.3 we turn to the actual work of correction, using

a variety of different methods and using the WSJ corpus as our data. Building on

this work, in section 5.4 we modify the tagging model in order to better account for

ambiguities and enhance performance. In section 5.5 we will attempt to validate the

work on the BNC-sampler and point out problems which arise in the process.

5.2 Methodology

When evaluating a correction method, we face an immediate problem: since we are

correcting the “gold standard,” we have no benchmark by which to gauge the accuracy

of the corrected corpus; in other words, we lack a true gold standard. Thus, we have

to do some evaluation by hand. As with the error detection results, we would like

to have had multiple evaluators, ideally annotators from the original corpus project,

doing the evaluation. Due to limitations of time and money, however, only the author

was able to evaluate the results.
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Instead of evaluating the output of each method separately by hand, we sampled

300 positions flagged by the variation n-gram method from the Wall Street Journal

corpus as potential errors, out of the 21,575 possible flagged positions. Based on the

error detection work, the set of flagged positions was derived by taking the position of

every non-fringe variation nucleus (i.e., every trigram nucleus). Every token position

associated with a variation type was included; we expect less than half of the flagged

positions to be erroneous since many variations occur frequently with one tag and

rarely with another tag, and the majority tag is likely correct.77

For these 300 samples, we removed the tag for each position and hand-marked

what the correct tag should be. That is, in order to prevent any bias in this re-

annotation phase, we had no access to the original tag or the set of variation tags,

but had to decide the correct tag based solely on the tagset distinctions, as given in

the manual (Santorini, 1990).

This same sample can then be used to evaluate the output of any method, thereby

minimizing the amount of human effort required. We can use it to tell how well each

method is doing overall and how well each is doing with respect to the corpus positions

where the correction method has changed the tag. The former tells us how accurate

the flagged portion of the corpus is if we replace every original tag with a tag from

the correction method. The latter tells us how accurate the changes to the corpus

are, which is an indication of how much the corpus is being improved.

An additional complication is that, because some of the tagset distinctions were

not defined clearly enough in the WSJ tagging guidelines (Santorini, 1990), we could

not decide for every corpus position what the exact tag should be. (See discussion

77We will show that the majority tag is more often correct than not in section 6.3.
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in section 2.2.3 under the heading Problematic tags.) We distinguished the following

cases: A|B means that we could not decide at all between tag A and tag B; there

were 29 such cases. A/B means that we favored tag A over tag B, but there was

insufficient evidence to say whether B was absolutely not viable; there were 73 such

cases. For the purposes of comparison, in the A|B case, matching either tag results

in a correct designation, while in the A/B case, matching A is marked as correct, but

matching B is marked as possibly correct.

For the original corpus, we find that 202 samples are definitely correct; 28 may be

correct, in that they matched the second tag; and 70 are incorrect. Since a human

could not decide which tag was correct for many of these cases, we cannot expect our

technology to do better. Thus, we will use the more lenient precision figure of folding

the “maybe” cases into the correct cases, making our precision figure an indication

of, on the one hand, how often the data is clearly not wrong, and, on the other, the

best performance we can expect to achieve. Keeping this evaluation metric consistent

across all experiments will provide a way to compare whether a correction method is

improving the corpus or not. For the benchmark, combining the correct and maybe

cases results in a precision of 76.67% (230 out of 300). A correction method must

then surpass this precision figure in order to be useful.

5.3 Methods for correction

We can now discuss different classification techniques to employ in correcting a

corpus. As van Halteren (2000) points out, taggers can be used to enforce consistency,

and thus can potentially correct errors arising from inconsistency.
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Classifiers fall into two main classes: supervised and unsupervised. Supervised

methods for classifying assume the existence of annotated training data; unsupervised

methods do not assume the existence of such data. The situation with error correction

is that of wanting to correct a flawed corpus, so one must wonder if using a supervised

method will work effectively. There is a chance that the classifier will learn the wrong

patterns from the corpus. However, we need to be aware of the patterns in the corpus.

If we assume humans are more often right (consistent) than not, it seems likely that

training a classifier on a corpus and using the result to generate the correct tags

has some promise. Additionally, unsupervised methods generally perform worse than

supervised (see, e.g., Brill, 1995b). Thus, we will discuss how we can use supervised

methods of classification for error correction.

The procedure for using a supervised tagger for error correction will be as follows:

1. Train the tagger on the entire corpus.

2. Run the trained tagger over the entire corpus.

3. Isolate the positions that the variation n-gram error detection method flags as

potentially problematic.

4. Choose the tagger’s label obtained in 2 for those positions.

It is hoped that the tagger will learn the consistent patterns from the corpus and will

generalize these patterns over the problem parts of the corpus. Items which violate

these generalizations will be corrected.
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The task of automatic correction is different from using POS taggers to annotate

a corpus. As stated in step 3 above, we are only concerned with the potential error

sites that the variation n-gram method flagged, not the entire corpus. With the high

precision of error detection (see section 2.2.3), we are able to focus on spots which

are more likely to need correction.

We now turn to the classification techniques which we use for error correction.

The task here is somewhat different than the original task of tagging a completely

unseen corpus, and so some issues, such as how to tag unknown words, do not concern

us. For each method, there are advantages and disadvantages for our particular task.

All of the techniques we will examine have in common that they use the surrounding

local context (typically, a window of two or three words and/or tags) to determine

the proper tag for a given corpus position, but they use this information in different

ways. The results will show that there is no clear best method, but in section 5.4, we

will show how to improve upon the results by adding information about ambiguity

classes into the tagging model.

In each of the following subsections, a brief description of the underlying tech-

nology is given; those who are familiar with the technology or who wish to skip the

details can go directly to the Results paragraphs.

5.3.1 N-gram Taggers/Markov Models

N -gram taggers (Church, 1988; DeRose, 1988; Charniak et al., 1993; Weischedel

et al., 1993; Brants, 2000b) use probability information about the surrounding n

tags to indicate what the most likely label for a given word is. They maximize two

probabilities in selecting a tag: 1) the probability of a tag given the surrounding tags
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(often only the preceding tags) and 2) the likelihood of a tag given the word. These are

what Church (1988) refers to as the contextual probability and the lexical probability,

respectively. The goal is to find the most likely sequence of tags T ({t1, ..., tn}) with

these two probabilities, given a particular word sequence W ({w1, ..., wn}). In other

words, we try to find the value of T which maximizes P (T |W ).

Most statistical classifiers use a Markov model for determining the best sequence

of tags, and good descriptions of using a Markov model for part-of-speech tagging can

be found in Charniak et al. (1993) and chapters 9 and 10 of Manning and Schütze

(1999). We will follow Weischedel et al. (1993) in describing this process.

Because of Bayes’ law, we can rewrite P (T |W ), the probability of a tag sequence

given a word sequence, as below:

(47) P (T |W ) = P (T )P (W |T )
P (W )

However, since the sequence of words is always the same, regardless of what sequence

of tags we select, we can ignore the denominator. Thus, we are interested in calcu-

lating and maximizing P (T )P (W |T ).

As stated above, the contextual probability of a tag depends on the previous tags,

so P (T ) will be equivalent to finding the probability of each tag given all the previous

tags. Likewise, the lexical probabilty depends on the previous words and tags. Thus,

we derive the equation in (48).

(48) P (T )P (W |T ) =
n
∏

i=1

P (ti|t1, ..., ti−1)P (wi|t1...ti−1, w1...wi−1)
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However, in practice, it is very costly to calculate these probabilities. To reduce

the amount of contextual information, only the previous n tags are used; for a tag’s

lexical probability, only the current tag is used. For a trigram (3-gram) model, for

instance, the following independence assumptions are made:78

(49) a. P (ti|t1, ..., ti−1) = P (ti|ti−2ti−1)

b. P (wi|t1...ti−1, w1...wi−1) = P (wi|ti)

Instead of examining all of the previous context, we only examine a small portion of

it. Markov models can be viewed as a series of states (represented by tags) and of

transitions between states. The probability in (49a) is called the transition proba-

bility, as it gives the likelihood of transitioning from one state to the next one. The

probability in (49b) is called the emission probability, since it gives the likelihood of a

word being emitted at the current state. In addition to specifying the transition prob-

abilities and the emission probabilities, the third component of the Markov model is

to specify the initial probabilities, i.e., the probability of a tag starting a sequence.

Putting this all together, to find the most likely sequence of tags, we want to find

the sequence which maximizes the equation in (50).

(50) P (T |W ) =
n
∏

i=1

P (ti|ti−2ti−1)P (wi|ti)

In short, we use information from the preceding n tags and information about how

likely a word is given a tag to figure out what the best sequence of tags is. Using the

previous two tags might be an advantage for correcting the variation n-gram method;

in the exact same context of words, we get two different taggings, so looking at a

more general context might better reveal the true pattern.

78These obviously are only an approximation of natural language, as dependencies exist between
words over the length of entire sentences.
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To obtain these probabilities during training, an annotated corpus is used to

calculate the relative frequencies. For every tag (tk), we count up how many times

it occurs preceded by the particular tags (ti, tj) and divide that by how many times

the preceding bigram occurs in isolation. This gives us the likelihood of tag tk given

that the previous tags were ti, tj , as in (51a) (where C(X) is the count of occurrences

of X). Likewise, we can easily calculate the probability of a word given a tag from a

tagged corpus, as in (51b).

(51) a. P (tk|ti, tj) =
C(ti,tj ,tk)

C(ti,tj)

b. P (wj|tj) =
C(wj ,tj)

C(tj )

Calculating probabilities is done during training; for actual tagging, one must find

the best possible path through the Markov model of states and transitions, based on

the transition and emission probabilities. This can be extremely costly, as multiple

ambiguous words means that there will be a rapid growth in the number of transitions

between states. Thus, the Viterbi algorithm (Viterbi, 1967) is commonly used to

reduce complexity. Instead of calculating the costs for all paths at each state, we

only keep the k-best paths.79

One often-discussed important issue for tagging is that of smoothing: if a word

has not been seen with a tag before, or if a tag sequence has not been seen before, that

does not mean it should have a probability of zero. Rather, some non-zero probability

should be assigned to unseen possibilities, so that they are not completely ruled out.

Brants (2000b) demonstrates that the particular smoothing technique is important

for the accuracy of one’s tagger; with good smoothing, his tagger achieves an accuracy

rate of 96.7%.

79Note that k may equal one and note also that another option would be to keep every path which
is above a certain threshold of probability.
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For the task of error correction, where the training and testing are done on the

same data set, smoothing is highly unlikely to be useful since there will be no unknown

words. It is possible that new tag sequences or new tags for words will be needed,

but we are trying to add consistency to the corpus, and so we expect a pattern seen

elsewhere to be applied to a new position. For these reasons, we will experiment with

using a tagger without any smoothing.

Brants (2000b) also points out that the handling of unknown words affects a

tagger’s importance. However, since we are training and testing on the exact same

text, we need not concern ourselves with the methods for dealing with unknown

words.

Results

For our purposes, we used the TnT (“trigrams and tags”) tagger (Brants, 2000b),

a Markov model tagger, trained on the entire original corpus and then tested on the

same corpus. As shown in figure 5.1, we found that 217 tags were correct, and 24

were possibly correct, giving an accuracy of 80.33%.

Changed Unchanged Total

Default 68.47% (76/111) 87.30% (165/189) 80.33% (241/300)
No smoothing 70.64% (77/109) 89.01% (170/191) 82.33% (247/300)

Figure 5.1: Results of using TnT to correct the 300 samples
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Here and throughout we report not only precision figures for all 300 samples, but

also precision figures for only those corpus positions which the tagger changed and

the complement set, the positions the tagger did not change. In this case, of the 111

changed positions, we find in figure 5.1 a much lower accuracy than overall, that of

68.47%. It seems, then, that this method does a fairly decent job of not changing

what it should not change, but those tags which it does changes are only correct

68.47% of the time.

As mentioned before, it might be the case that smoothing is detrimental to our

results since we know that no new words will be seen. Indeed, removing smoothing

(using the option “-d1/0” in TnT) seems to help somewhat, giving 82.33% overall

accuracy and 70.64% accuracy on the changed positions, but the numbers are still

fairly similar, and we cannot say that this change is significant.

We will return to the TnT tagger and some of the problems it faced in section 5.4

when we explore ways of modifying the tagging procedure in order to improve the

accuracy.

5.3.2 Decision trees.

A probabilistic decision tree tagger is developed in Schmid (1997). This classifier is

akin to an n-gram based tagger, in that the determining context for deciding on a tag

is the space of the previous two tags. However, instead of calculating probabilities of

sequences of tags from their frequencies during training, a binary-branching decision

tree is constructed. The nodes of the tree refer to one of the previous two tags and

ask whether that tag has a certain value. For example, the node might be tag−1 =

ADJ?, and the branches correspond to either a yes or a no answer. By following the
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path down to the terminal elements of the tree—sets of (tag, probability) pairs—one

can calculate what the most likely tag is. These decision trees are created during

a training phase and used during tagging to calculate transition probabilities for

sequences of tags (see below).

Each node should divide the data into two maximal subsets, i.e. should ask the

question which provides the most information about a tagging decision. To do this, a

metric of information gain is used, which determines how much information is gained

by using this node. By maximizing the information gain, the average amount of

information still needed after the decision is made is minimized.

Once a decision tree is constructed, it can be used to derive transition probabilities

for a given state in a Markov model. As with other probabilistic classifiers utilizing a

Markov model, the Viterbi algorithm is then used to find the best sequence of tags.

With this, Schmid (1997) reports accuracy results up to 96.36%.

As the motivation for using decision trees over n-gram taggers, Schmid (1997)

cites the problem of n-gram taggers in estimating small probabilities from sparse

data, which decision trees should do a better job of obtaining. Another possible

advantage that the decision tree model has is that the appropriate context size is

determined by the decision tree. For example, just the preceding or the following

tag may be enough to determine the correct tag. In (52), taken from the WSJ, for

instance, to know that such should be changed from adjective (JJ) to pre-determiner

(PDT), one only need look at the following determiner an, and that provides enough

context to disambiguate.

(52) Mr. Bush was n’t interested in such/JJ an informal get-together .
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Another possible advantage is that decision trees have been applied to parsing

(Magerman, 1995) using a positional encoding (features are assigned to individual

words) which may assist in extending this error correction work to the classification

of the output of the variation n-gram method for syntactic annotation. Additionally,

Mitchell (1997) states that, because decision tree algorithms use all of the training

data at once to make a decision, “Decision tree learning methods are robust to errors”;

if that is true, then we should find fairly successful correction. However, the claim

about the robustness towards errors is true if the errors are local to a single training

example, or only a small number of examples (Mitchell, 1997). Frequently occurring

errors, or types of errors, will still cause problems. Also, the robustness towards errors

is dependent upon what method of pruning is used.

Results

We used Schmid’s Decision Tree Tagger (which we will occasionally refer to as

DTT ), and what we find are results which are slightly higher than with n-gram

tagging. In figure 5.2, we see that we are able to obtain accuracies of around 84%

total, but again much lower on changed positions (73-74%). We tried two different

methods: in the default case, the tagger was given a corpus without any annotation.

In the using tags case, every non-variation tag was assigned its original tag, in the

hopes that by only having to guess at the variation tags, the tagger would be using

more reliable contextual information. Somewhat surprisingly, we see very little change

between the two methods of tagging, indicating that the context of tags the tagger

is able to generate on the fly is as sufficient for these purposes as using the original

tags as context, if not better.
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Changed Unchanged Total

Default 73.83% (79/107) 90.15% (174/193) 84.33% (253/300)
Using tags 72.82% (75/103) 89.34% (176/197) 83.67% (251/300)

Figure 5.2: Results of running the Decision Tree Tagger on the 300 samples

Aside from the possible robustness to errors, one reason DTT outperforms TnT

is likely that it has a more flexible context. As mentioned, in example (52)—which

DTT correctly changes and TnT does not—the fact that interested is tagged JJ two

words back is irrelevant to the tagging decision at hand. Such information could

indeed mislead a tagger, if a preceding context of JJ IN happens to be an accidental

predictor of JJ for the current word. TnT uses a fixed context of trigrams, and so is

swayed by tags appearing two words back. DTT is more flexible and can in principle

focus on smaller windows of context when that is the only pertinent information,

thereby allowing it to ignore misleading information. As DTT does not provide a

way of viewing output trees, however, we cannot confirm that this is the reason for

improvement.

5.3.3 Transformation-Based Error-Driven Learning (TBL)

Error-driven Transformation-Based Learning (TBL) (Brill, 1994, 1995a) is a tech-

nique which attempts to automatically derive rules for classification from the cor-

pus. The advantage over statistically-based tagging—as detailed in sections 5.3.1

and 5.3.2—is that the rules are more linguistic than probabilities and are thus more

easily interpretable.
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The first component of TBL is the initial state annotator. For both training

and tagging, the first step is to run an initial state annotator over the text. For

training, this text is the original, but now unannotated, corpus; for testing, this text

is whatever text needs to be annotated. Note that these are identical for our purposes.

The initial state annotator can be anything from a random assignment of tags to a

different sophisticated classifier.

The second component is the set of allowable transformations. The goal of the

training phase is to produce a list of ordered rules to be applied to a text when

tagging, but we have to specify the kinds of rules which can be learned. Every rule,

or transformation, is of the form in (53), which specifies that Tagi should be changed

to Tagj in a particular context C.

(53) Tagi → Tagj in context C

The set of allowable transformations defines what kinds of contexts can be specified

by using rule templates. One rule template is given in (54).

(54) Tagi → Tagj when the preceding (following) word is tagged z.

An instance of (54) cited in Brill (1994) is “change the tagging of a word from noun to

verb if the previous word is tagged as a modal.” The set of allowable transformations

used in Brill (1994) allows tags to be changed depending on the previous (following)

three tags and on the previous (following) two word forms. Note that this gives the

tagger a slightly larger window and in some respects more flexibility than the previous

taggers we have looked at. For example, we find the following rule in our experiments

below: Change VBP (3rd person present tense verb) to VB (base form verb) if one of

the previous three tags is MD (modal). This rule (which is the second-highest ranked
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rule in all the experiments below) allows the tagger to pick any one of the three tags

and thus is not dependent on a particular tag in a particular location, and it correctly

parallels a linguistic generalization—base form verbs are arguments of modals.

The third component, the objective function, specifies when a rule should be

learned. The usual metric is tagging accuracy: we want our rules to result in a more

accurate text, as determined by the benchmark corpus, here called the “truth.” The

training phase is iterative: the learner runs over the text multiple times and tries out

all possible transformations. It compares the output of that rule application with

the “truth.” A rule is learned on each iteration when it results in the greatest error

reduction of the tagged text, i.e., maximizes the objective function. When the scores

of rules—the error reduction scores—drop below a pre-defined threshold, the training

phrase is completed. The threshold is defined as the number of corrections a rule

makes minus the number of errors it introduces, i.e., the net error reduction in the

text.

The emphasis on reducing errors is the impetus for the name “error-driven,” and

as Brill and Pop (1999) point out, the attempt to minimize the number of errors dis-

tinguishes the transformation-based tagger from Markov-model based taggers, which

maximize the string probability. With such a set-up, Brill (1994) reports accuracies

of up to 97.2% for text with no unknown words.80

80Volk and Schneider (1998) report that the Brill tagger outperforms a decision tree tagger with
respect to the tokens which are ambiguous in the lexicon. It is unclear whether this performance
will carry over to the kinds of variations we are examining.
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One could experiment with adjusting the objective function, especially since we

know the “truth” is flawed in some places in the corpus. However, in the absence of

a solid objective function to replace Brill’s, we do not pursue that here.81

Results

For our experiments, we used the original transformation-based learner written

by Brill82 and trained our contextual rules on the entire WSJ corpus,83 using the 26

rule templates provided with the release and described in Brill (1994). The initial

state annotator simply assigns a word’s most frequent tag to the corpus position.

The training phase produces a list of ordered rules, and one can use the whole list or

only a subset of the rules for tagging. For our purposes, we used different subsets,

based on particular thresholds, i.e. using only the rules at or above a certain value. In

figure 5.3, we present the results of the Brill tagger on the 300 samples with thresholds

of 7, 10, 15, and 20.

Two items are noteworthy about these results. First, the overall precision slightly

degrades in going from a threshold of 15 to a threshold of 10, even though a lower

threshold generally means that the tagger will be more accurate. However, the

changed results are the highest we have seen, and they get better as the thresholds

get lower and more rules are used. The tagger does better on changed positions than

either TnT or DTT because it adds rules by compaing to the corpus and maximizing

81One might consider a function which maximizes the corpus consistency, but it is not clear how
to exactly quantify consistency, and to detect a single value over an entire corpus would be a time-
consuming effort.

82Available at: http://www.cs.jhu.edu/˜brill/

83The training corpus is usually split into a section for unknown word rule learning and a section
for contextual rule learning, but since unknown words were not a problem, we used the entire corpus
for the learning of contextual rules.
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Thresh. Rules Changed Unchanged Total

7 665 75.79% (72/95) 83.41% (171/205) 81.00% (243/300)
10 478 75.00% (69/92) 84.13% (175/208) 81.33% (244/300)
15 346 74.49% (73/98) 85.64% (173/202) 82.00% (246/300)
20 270 70.59% (72/102) 84.85% (168/198) 80.00% (240/300)

Figure 5.3: Results of running the Brill Tagger on the 300 samples with all 26 tem-
plates

the reduction in error rate. When a new rule is added and subsequently used, the

tagger should match the corpus better. If it does not match the corpus, despite this

closer fit, then the evidence must be strong elsewhere in the corpus for the changed

tag.

By examining a subset of the rules more closely, we can see that one problem the

tagger has is that it is lexicalized, in that it can learn rules for specific words. While

this matches a corpus well, it might do so at the cost of losing general patterns. For

example, the tagger six times guessed common noun (NN or NNS) when it should

have assigned adjective (JJ) (and only once guessed JJ when it should have assigned

NN). We can see two examples in (55) where the hyphenated modifier should be JJ

and appears in an environment which is prototypically an adjectival environment.

Granted, because of noun-noun compounds, this is not always an adjectival spot,

but for a word which varies between noun and adjective, the chances of an adjectival

use should increase when between a determiner and a noun. However, as shown in

figure 5.4, we see no such indication that this is an adjective slot; what we find instead

is a list of rules conditioned for the most part on the particular lexical item involved.84

84The notation WDNEXTTAG executive NN for NN JJ should be read as: Change NN to JJ
when word = executive and tag+1 = NN.
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(55) a. an interest-rate environment

b. a deficit-reduction bill

Rule number From To Context
72 NN JJ WDNEXTTAG executive NN
132 NN JJ CURWD first
144 NN JJ WDNEXTTAG official NN
167 NN JJ WDNEXTTAG right NN
244 NN JJ WDNEXTTAG giant NN
250 NN JJ WDNEXTTAG official NNS
251 NN JJ WDPREVTAG DT third
263 NN JJ WDNEXTTAG firm NN
285 NN JJ WDNEXTTAG close NN
286 NN JJ WDNEXTTAG half NN
301 NN JJ NEXTWD oil
302 NN JJ RBIGRAM equivalent to
310 NN JJ SURROUNDTAG DT NNP

Figure 5.4: Rules for changing NN to JJ in the Brill tagger (threshold = 15)

Likewise, the tagger 13 times guessed IN when it should have guessed RB (and

never guessed RB instead of IN, which is generally the more frequent tag). We

see in the six rules changing IN to RB in figure 5.5 that as/As, before, and about

are essentially the only words which get their tags changed in particular contexts;

otherwise, if a word’s most common tag is IN, it will stay IN.

To test whether removing some lexical information improves performance, we re-

moved the 12 templates in the tagger which refer to surrounding words and completely

retrained the tagger to obtain a new list of rules; templates referring to the current
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Rule number From To Context
12 IN RB WDAND2AFT as as
116 IN RB SURROUNDTAG , ,
168 IN RB WDNEXTTAG as RB
252 IN RB WDAND2AFT As as
271 IN RB WDNEXTTAG before .
328 IN RB WDAND2AFT about %

Figure 5.5: Rules for changing IN to RB in the Brill tagger (threshold = 15)

word were kept in the set. As we can see in figure 5.6, this did not help at all—

the overall precision is the same for almost every threshold level. It does show that

we can obtain similar rules using higher thresholds and fewer templates, making the

processing time somewhat faster.

Thresh. Rules Changed Unchanged Total

7 605 73.73% (73/99) 84.58% (170/201) 81.00% (243/300)
10 457 74.19% (69/93) 84.54% (175/207) 81.33% (244/300)
15 325 73.47% (72/98) 86.14% (174/202) 82.00% (246/300)
20 256 71.00% (72/102) 85.50% (168/198) 80.67% (242/300)

Figure 5.6: Results of running the Brill Tagger on the 300 samples with 14 templates

5.3.4 Memory-Based learning

Different from the previous methods, the next method, memory-based learning

(MBL) (Daelemans et al., 1996, 1999), is based on the notion that keeping all training

instances in memory will aid in the classification task. MBL has been used for a variety
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of classification tasks, including part-of-speech tagging, base noun phrase tagging,

and parsing (see, e.g., Daelemans et al. (1999); Kübler (2003) and references therein).

Little abstraction is done in storing the training data, and the testing data is classified

based on the similarity to the examples in memory, using a similarity metric.

For the task of part-of-speech tagging, Daelemans et al. (1996) define the data to

be stored as cases: each case consists of a word, the preceding and following context,

and the category label in that context. Training is thus a matter of selecting the size

and nature of the context and then simply storing these cases.

When tagging, one finds the most similar case(s) in memory to the current situa-

tion.85 The similarity metric is calculated by examining the distance between feature

values. The distance, or overlap, metric is defined in (56) for two feature values (xi

and yi) and is basically an identity check.

(56) δ(xi, yi) = 0 if xi = yi, else 1

So, the similarity metric is obtained by summing over all n features, as in (57).86

(57) ∆(X, Y ) =
n
∑

i=1

δ(xi, yi)

Results

We ran some experiments with the Tilburg Memory-Based Learner (TiMBL),

version 5.0 (Daelemans et al., 2003), which attempts to make the best match between

the current data point with a data point stored in memory, without abstraction. As

we will see, without modifying the default algorithms, this matching results in a close

match to the original data. In fact, when training on the entire corpus and then

85This is essentially a form of k-nn (k-nearest neighbor) classifying.

86As it is, the similarity metric treats each feature equally. The final formula used in Daelemans
et al. (1996) weights each feature. We will experiment with both methods.
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testing on it again, we see relatively few changes. We used the following features:

word, tag−2, tag−1, tag+1, tag+2,
87 and we found that, out of the 1,289,201 tokens

in the corpus, TiMBL matched the tags for 1,283,256 of them, or 99.54%. For our

sample of 300 items, TiMBL only made 43 changes out of the 300.88 The precision

results were also fairly poor: 78.33% (235/300), with 74.42% (32/43) for changed

positions and 78.99% (203/257) for unchanged positions, as shown in the first line of

figure 5.7. This is barely above the baseline accuracy rate we established with the

original corpus. But these results are obtained with the defaults and are rather blind

to the qualities of TiMBL as a tagger.

Modifying the TiMBL options

Changing the size of k to find the k-nearest distances has a useful effect. The

default is to find the one nearest distance and select the majority label from all

neighbors which match that distance. But because the data is being matched too

well (i.e., we are overtraining), we would like to expand the candidate set from which

to draw a correct tag. Thus, we experiment with using different sizes of k.

Without changing the voting scheme, this means that for k=3, for example, the

items with the three closest distances all vote once for their tag. The effect of this is

to draw more candidates into the voting scheme and hopefully to overtrain less.

87Note that, in principle, this is better information than that used in the cases for Daelemans
et al. (1996) since their tagger proceeds in an iterative fashion and only has access to disambiguated
tags for the previous words. Instead of our tag+1 and tag+2 features, they use the ambiguity class
of the focus word and of the following word.

88Note, though, that changing 14.33% of the 300 items is much higher than the average corpus-
changing rate of 0.46%.
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We tried this by using our original features and leaving all other defaults un-

changed. The results are given in figure 5.7. We obtain the best results for k=3 and

k=4. Precision starts to drop dramatically with k=5, and we even see some very

strange taggings, such as a comma tag (,) when VBN/JJ was correct. This is because

everything in the candidate set gets an equal vote, so once we start expanding out

the candidate set, if some features happen to coincide, that instance gets an equal

vote.

k Changed Unchanged Total

1 74.42% (32/43) 78.99% (203/257) 78.33% (235/300)
2 73.08% (57/78) 83.78% (186/222) 81.0% (243/300)
3 76.19% (64/84) 83.80% (181/216) 81.67% (245/300)
4 73.33% (66/90) 85.24% (179/210) 81.67% (245/300)
5 65.31% (64/98) 85.64% (173/202) 79.0% (237/300)

Figure 5.7: Adjusting the size of k in TiMBL

We can change the weighting so that the closer a candidate is, the more weight

it receives, using the distance-weighted class voting option of TiMBL. This weights

the votes based on the distance from the center. For example, when k is equal to 3,

instead of all items (k = 1, 2, 3) getting the same weight, items one feature away

have a higher weight than items three features away. Trying this, however, gives us

worse results, as shown in figure 5.8. Once again we seem to be training too much

on the erroneous data: TiMBL makes few changes and increasing k does very little

to improve the quality of tagging.
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k Changed Unchanged Total

1 74.42% (32/43) 78.99% (203/257) 78.33% (235/300)
2 76.74% (33/43) 79.38% (204/257) 79.0% (237/300)
3 77.78% (35/45) 79.61% (203/255) 79.33% (238/300)
4 77.27% (34/44) 79.69% (204/256) 79.33% (238/300)
5 75.0% (33/44) 79.30 (203/256) 78.67% (236/300)

Figure 5.8: Adjusting the size of k in TiMBL with weighted voting

5.3.5 Summary for correction methods

The best results obtained so far for each automatic correction method are given

in figure 5.9. We can see that the overall precision levels are around 82-84%, but that

the precision for the changed positions is at or below the baseline of 76% for the WSJ

corpus.

Method Changed Unchanged Total

TnT 70.64% (77/109) 89.01% (170/191) 82.33% (247/300)
DTT 73.83% (79/107) 90.15% (174/193) 84.33% (253/300)
Brill 74.49% (73/98) 85.64% (173/202) 82.00% (246/300)
TiMBL 76.19% (64/84) 83.80% (181/216) 81.67% (245/300)

Figure 5.9: The best correction results

We can conclude a few things from figure 5.9. First, fully automatic correction

is not feasible using the tagging models as given; the corpus positions we change are

not sufficiently accurate. Secondly, as evidenced from the fact that up to 90% of the
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unchanged tokens did not need to be changed, the task of detecting erroneous tokens

is fairly successful, in that the changed tokens contain the tokens which need to be

changed. This is more fully discussed in section 6.5.

5.4 Making taggers aware of difficult decisions

We tried four very different classification methods for correction, and at best,

we obtained 84% accuracy, but the results on the changed positions were below the

baseline of 76.7%. Note that because of good error detection, those percentages

of 70-75% are still very high—by way of comparison, van Halteren (2000) found

that his tagger was right no more than 20% of the time when it disagreed with the

benchmark—but are still not sufficient. Given the variety of methods but similarity

of results, the answer for error correction seems to lie less in what tagging method is

used and more in how we use those methods.

The errors we detect through the variation n-gram method arise from variation

in the corpus. Such variation can reflect decisions which were difficult for annotators

to maintain over the entire corpus, for example, the distinction between preposition

(IN) and particle (RP) for certain words. In order to improve our correction results,

we intend to exploit the fact that these difficult distinctions recur often and can be

added to a tagging model. That is, we intend to make our correction classifiers aware

of the difficult distinctions, so that they might more correctly assign tags to variation

positions.

But how do we make a classifier “aware” of a problematic distinction? To answer

this question, we will first discuss the idea of a lexicalized tagger and how taggers

have been lexicalized in previous work. This will help us to understand how to inform
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a tagging model about prominent tagging distinctions. By discussing the motivation

for and drawbacks to tagger lexicalization in section 5.4.1, we will be in a position

to develop a model based on the difficult distinctions found in variations. Thus, to

improve correction, we propose in section 5.4.2 a modification to the tagging model

based on using a word’s ambiguity class.

5.4.1 Lexicalizing the tagger

A tagger enforces uniform decisions for (classes of) words over the entire corpus;

as the variation n-gram error detection method shows, such consistency in decision-

making can be missing in a corpus. One way to enforce consistency for a particular

word is to “lexicalize” the tagging model. Lexicalizing the tagger means that classes

(tags) are subdivided into lexically-specific classes; such subdividing captures the

intuition that some words have different distributions than other words within the

same class.

By lexicalizing a tagger, we will enforce uniform decisions for a given word. Lex-

icalization will also have the effect that the tags assigned are a much better fit to

the benchmark. That is, the tagging model will be more specific—it will now have

a greater number of classes with probabilities specific to those word-specific classes.

With a better match to the data, one might gather that the deviations from the

uniformity it then enforces are caused by errors in the corpus. This was not true,

however, with TiMBL (see section 5.3.4), and we will also see here that fitting the

data well does not mean the tagger always is correct.
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To see if a better match of the data results in a better correction, we attempted

to lexicalize a tagger. To do this, we replaced the tag of every word which serves

as a variation nucleus somewhere with a complex tag composed of the word and its

original label; all other words retained their original tags. Then, following Pla and

Molina (2004), we ran TnT on it. Since we are ultimately just creating new tags,

we are in essence not really modifying the tagger so much as we are modifying the

tagset. An example is provided in (58); the tag of RB (adverb) in (58a) is changed

to <ago,RB> in (58b); i.e., ago now has its own tag.

(58) a. ago/RB

b. ago/<ago,RB>

The results, as shown in figure 5.10, indicate that a lexicalized tagger does not

work well for our purposes because it enforces uniform decisions for a single type

of word, thus giving it less information to make a general decision. The lexicalized

tagger makes very few changes: only 48 out of 300 tags were changed from the original

corpus, compared to 111 changes made by an unaltered TnT. (Overall, according to

the program tnt-diff, which compares the tagged corpus with the original, only 0.93%

of the corpus was changed.) When it changes, it does so with more precision than the

regular TnT model did, but still only with 75% precision, and it does considerably

worse on the unchanged positions.

Changed Unchanged Total

Regular TnT 68.47% (76/111) 87.30% (165/189) 80.33% (241/300)
Lexicalized TnT 75% (36/48) 78.17% (197/252) 77.67% (233/300)

Figure 5.10: Results of using a tagger lexicalized for variation words
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The problem with lexicalizing taggers for this task is that the benefits of lexical-

ization do not match our goals. Lexicalization works well when the tagger encounters

“words whose probability distribution within a certain category is different from the

rest” (Pla and Molina, 2004). For example, that behaves differently from other IN

(preposition/subordinating conjunction) words, so splitting it into its own node pro-

vides a more accurate representation of its distribution. However, there is no reason

to believe that the variation words we are examining have their own distribution.

Our goal, on the other hand, is to make a tagger aware of the difficult distinc-

tions that the variation n-gram method turned up. Lexicalizing tries to capture the

intuition that some words have different distributions than other words (or than a

whole class of words). What we want to test is whether some variations have different

distributions than other variations. We will explore this in the next section.

As a side note, we want to point out that a lexicalized tagger might actually

be modeling noise: simply making sure that ago has its own distribution does not

necessarily mean we will tag it correctly, even though it will conform more to the

original corpus. Thus, errors in the training data can throw off a lexicalized tagger

even more than normal, despite an apparent gain in accuracy over the whole corpus.

5.4.2 Using complex ambiguity tags

Lexicalizing the tagger for some words treats those words as distinct classes, but

a word sometimes behaves like an instance and sometimes like a class. Classes have

certain properties, but individual lexical items can belong to many different classes—
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comprising what we will call an ambiguity class—and it might be the case that these

ambiguity classes behave in their own way. For example, consider the words away

and aboard, both of which can be adverbs (RB).

In example (59), we find that away can also be a particle (RP), thus making it a

part of the ambiguity class RB/RP. On the other hand, as we see in (60), aboard can

be an preposition (IN), as part of the ambiguity class IN/RB, but not a particle. Not

only do away and aboard belong to different classes—away can appear in a particle-

verb construction (59a) and aboard as the head of a preposition (60a)—but even their

adverbial uses are distinguished. The use of away is followed by from, a construction

forbidden for aboard (*aboard from89).

(59) a. A lot of people think 0 I will give away/RP the store

b. the Cray-3 machine is at least another year away/RB from a fully operational
prototype

(60) a. These are used * aboard/IN military helicopters

b. Saturday ’s crash of a Honduran jetliner that *T* killed 132 of the 146 people
aboard/RB

By using ambiguity class information, we will then be able to distinguish adverbs

which can be followed by from (e.g., away) from those which cannot (e.g., aboard).

Furthermore, when we examine the RB/RP words, we find that they form a natural

class: apart, aside, and away, all of which can be followed by from. Not every

ambiguity class is so cleanly delineated, but this demonstrates that such classes can

indeed provide more unified groupings.

89An asterisk before an example indicates ungrammaticality, whereas an asterisk in the WSJ
corpus indicates a null element, as in example (60a)
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By deriving such an ambiguity class for each word, we are better able to capture

the distinctions which annotators faced in annotating that word. In essence, then,

we propose splitting a class such as RB into subclasses, e.g., into JJ/RB, NN/RB,

IN/RB, etc. This reflects the fact that a whole class—as determined by the tagset—

may be fractured, with one subpart behaving one way and another subpart another

way. For example, consider how the Penn Treebank uses IN for both subordinating

conjunction and prepositional uses, even though these subparts behave differently. In

(61a) (Santorini, 1990, p. 31), for instance, when is a subordinating conjunction, but

a host of prepositions are ungrammatical in the same slot (61b).

(61) a. I like it when/IN you make dinner for me.

b. I like it *in/*of/*on/*up you make dinner for me.

This proposal is akin to work on splitting labels, or states in a Markov model, in

order to obtain better statistics (e.g. Brants, 1996; Ule, 2003) for situations with “the

same label but different usage” (Ule, 2003, p. 181). The approach also falls in line

with taggers that were trained using class distinctions based on ambiguity classes.

For example, the decision tree tagger described in Marquez, Padro, and Rodrigues

(2000) bases its decision nodes on particular tag pairings.

In like fashion, we will make the tagger informed about which tag pairings are

difficult to disambiguate. If we know what decision was involved in the selection of a

tag, then we can derive a better model. In other words, we are trying to model what

the annotators did, but to apply their decisions in a consistent fashion. We return

to the rationale for using ambiguity class information after we first fully define what

complex ambiguity tags are. Then we describe how they are automatically assigned.
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Complex ambiguity tags

In terms of implementing this idea, we can view the task as akin to lexicalizing the

tagger, wherein all words involved in a variation trigram are given a new (complex)

tag. The complex tag is composed of the word’s ambiguity class and the resolved tag

for that position. Let us take the example of ago, which varies between preposition

(IN) and (RB) throughout the corpus. Its ambiguity class is thus IN/RB, and ago

is assigned this ambiguity class throughout the corpus. At a particular position,

however, it either resolves to IN or RB, and in example (62), it resolves to RB. Thus,

we assign ago the complex ambiguity tag <IN/RB,RB>, as shown in (62b).

(62) a. ago/RB

b. ago/<IN/RB,RB>

We replace every word in the corpus with a tag representing the ambiguity class

of that word, assuming we can determine what the appropriate ambiguity class is.

Thus, we have the whole corpus from which to draw generalizations

A key question is: what ambiguity class should every word be assigned? In the

tagging literature (e.g. Cutting et al., 1992) a class is composed of the set of every

possible tag for a word. We could do likewise, but this could result in too many classes

to be of practical use, for two reasons: 1) there are erroneous tags which should not

be part of the ambiguity class, and 2) some tags and some classes are irrelevant for

disambiguating variation positions.

Assigning complex ambiguity tags

To assign complex ambiguity tags to all words in the corpus, we used the following

procedure, based on whether a word was flagged as a potential error by the variation

n-gram method (1) or not (2).
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1. Every word which is a variation word (i.e. nucleus of a non-fringe variation) or

type-identical to a variation word is assigned:

(a) a complex tag reflecting the ambiguity class of all relevant ambiguities

(defined below) in the 3-grams.

(b) a simple tag reflecting no ambiguity, if tag is irrelevant.

2. Based on their unigram tags, non-variation words are assigned:

(a) a complex tag, if and only if this word’s ambiguity tag also appears as a

variation ambiguity.

(b) a simple tag otherwise.

Variation words The whole point of assigning complex ambiguity tags is to make

prominent the variations in variation words, and that is what choice 1a does. An

example of choice 1a is in (62b), where ago varies between IN and RB in the trigrams,

and so receives the tag <IN/RB,IN> when it resolves to IN and <IN/RB,RB> when

it resolves to RB.

The choice can actually be a little more complicated in some cases. Instead of

simply assigning all tags occuring in an ambiguity, we filter out ambiguities which

we deem irrelevant. Following Brill and Pop (1999) and Schmid (1997), we do this

by examining the unigrams (in other words, an automatically-generated dictionary of

tags for this corpus) and throwing out tags which occur less than 0.01 of the time for

a word (unless they appear a minimum of 10 times). This eliminates variations like

,/DT where DT appears 4210 times for an, but the comma tag (,) appears only once.

Doing this means that an can now be grouped with other unambiguous determiners.
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Admittedly, we may lose some information this way, in the form of correct but rarely-

occurring cases,90 but we remove some erroneous classes, and we gain generality and

avoid data sparseness since fewer ambiguity classes are now being used.

For variation words, choice 1b is chosen when the current tag is not in the am-

biguity class. For instance, if the class is IN/RB and the current tag is JJ, it gets

JJ instead of <IN/RB,JJ> because this latter option does not really make sense (a

word varying between IN and RB should not resolve to JJ). This situation arises in

two different scenarios.

In the one case, because we are taking the ambiguities only from the 3-grams

and not from all the possible tags throughout the corpus, words which are involved

in a variation may have tags which are never involved in a variation. For example,

Advertisers shows up as a non-fringe nucleus varying between NNP and NNPS (Na-

tional Advertisers .). In non-variation positions, it appears as a plural common noun

(NNS). When it appears as NNS, it receives the tag NNS because NNS is not relevant

to the variation we wish to distinguish.

In the second case, because some tags have been removed from the ambiguity

classes, as described above, there are tags no longer relevant for the variation. For

example, an receives the comma tag (,) instead of <,/DT,,> because the comma was

filtered out as a possible ambiguity tag, i.e. was deemed irrelevant.

One more note is needed explain how we handled the vertical slashes that are used

in the Penn Treebank annotation. Vertical slashes represent uncertainty between two

tags (e.g., JJ|VBN means the annotator could not decide between JJ (adjective) and

VBN (past participle)); this is a case of two tags in one. When there is variation

90See the discussion surrounding Daelemans et al. (1999) in section 1.2.1.
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between JJ, VBN, and JJ|VBN, this is simply variation between JJ and VBN, and

we will uniformly represent it by the class JJ/VBN. Note that this decision has non-

trivial effects. Because JJ/JJ|VBN/VBN is converted to JJ/VBN, JJ/VBN words

now have a larger class and thus more data.

Non-variation words In order to group more cases together, non-variation words

can also take complex ambiguity tags. As described in 2, for words which are not a

part of a variation trigram nucleus, we assign a complex ambiguity tag if the ambiguity

is also involved in some non-fringe trigram (choice 2a). For instance, in the first

sentence of the treebank, join gets the tag <VB/VBP,VB>, even though join is

never a non-fringe variation nucleus. It gets the tag <VB/VBP,VB> because its

ambiguity class VB/VBP is represented in the non-fringe trigrams.

On the other hand, we ignore ambiguity classes which have no bearing on the

variation trigrams (choice 2b). For example, ours varies between JJ (adjective) and

PRP (personal pronoun), but there are no non-fringe variation nuclei which have this

same ambiguity class, and therefore we assign the three cases of PRP to PRP and the

three cases of JJ to JJ. We treat non-variation words as we do in order to increase

the amount of relevant data (choice 2a), and still to put all non-varying data together

(choice 2b).

Uniform assignment of tags It might be wondered why we only allow one possible

ambiguity class per word over the whole corpus, instead of dividing up the class for

more specific instances. For example, in publicly traded investments, traded varies

between JJ (adjective) and VBN (past participle), but in contracts traded on, it varies

between VBD (past tense verb) and VBN. It seems like it would be a good idea to
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keep the JJ/VBN cases separate from the VBD/VBN cases, so that a tagger can learn

one set of patterns for the JJ/VBN cases and a different set for the VBD/VBN cases

(i.e., maximize the distinctiveness between distinct cases). While that is in principle a

good idea and is an avenue of further study, there are several reasons why restricting

words to a single ambiguity class is a good idea for present purposes, i.e., why we

assign traded the ambiguity class JJ/VBD/VBN.

First, akin to the task of lexicalization, we want to group as many of the word

occurrences as possible together into a single class. That is, using JJ/VBN and

VBD/VBN as two separate ambiguity classes would mean that traded as VBN lacks

a pattern of its own. To give us more data applicable for that class and for that word,

we allow a word to have no more than one ambiguity class.

Secondly, multiple ambiguity classes for a word would also potentially increase

the number of possible tags for a word. For example, instead of having only the tag

<JJ/VBD/VBN,VBN> for when traded is VBN, we would have both <JJ/VBN,VBN>

and <VBD/VBN,VBN>. With a greater increase in the number of tags, we be-

gin to have a problem with data sparseness; everything not designated as an in-

stance of a particular class pulls information away from that class. For a technology

such as Markov model tagging, we are already splitting states in the tagging model

(see discussion below) by creating these new tags (e.g., instead of JJ, we now have

<JJ/NN,JJ>, <JJ/VBN,JJ>, and so on). As much as possible, we would like to

minimize the amount of splitting of states in the HMM tagger. If we split too often,

we will have classes which barely ever appear. For example, as things stand right

now, <JJ/VB/VBN,VBN> appears only 3 times, which does not give us much infor-

mation. Increasing the number of tags would only create more such sparse classes.
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Finally, a word has only one ambiguity class throughout the corpus because, al-

though we know what the exact ambiguity in question is for a variation trigram, it is

simply too difficult to go through position by position to guess the correct ambigu-

ity for every other spot. If we encounter a JJ/VBD/VBN word like followed tagged

as VBN, for example, we cannot know for sure whether this is an instance where

JJ/VBN was the decision which had to be made or if VBD/VBN was the difficult

choice.

In short, each word has only one ambiguity class, and we assign every word in the

corpus a complex ambiguity tag when that ambiguity is relevant for disambiguating

a variation. When the ambiguity will not aid in disambiguation, the word is given a

simple tag.

The rationale for complex ambiguity tags

Having defined how we assign complex ambiguity tags, we can now return to

the purpose that they serve. As mentioned earlier, we use complex ambiguity tags

because they can provide better distinctions than we had with unaltered tags. For

example, if <IN/RB,IN>—a word varying between IN and RB which resolves to IN at

this position—has a different distribution than <DT/IN,IN>, then they should have

different representations in the tagging model, as opposed to being conflated into the

single tag IN. Words which can be <IN/RB,IN> (e.g., ago) but not <DT/IN,IN>

can ignore the contextual information that <DT/IN,IN> words like that provide.

To take an example, we will work through the 5-gram revenue of about $ 370 as

it is tagged by an n-gram tagger. The 5-gram in the WSJ is annotated as in (63)

(starting at position 1344 in the WSJ).

(63) revenue/NN of/IN about/IN $/$ 370/CD
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Between of and $, the word about varies between preposition (IN) and adverb

(RB): it is IN 67 times and RB 65 times. When training TnT on the whole corpus

without any modifications, we find that RB is a slightly better predictor of the fol-

lowing $ tag based on the previous two tags (1.35 times more likely), as shown in

(64).

(64) a. p($|IN, RB) = .0859

b. p($|IN, IN) = .0635

However, due to the surrounding probabilities, IN is the tag that TnT assigns. Note

that this is the tag found in the original corpus, but that tag is incorrect with respect

to the manual since “about when used to mean ’approximately’ should be tagged as

an adverb (RB), rather than a preposition (IN)” (Santorini, 1990, p. 22). Thus, as

part of error correction, we would like to see it tagged RB—even though IN is slightly

more likely in this particular lexical trigram (of about $).

The word about generally varies between three tags: IN, RB, and RP (particle);

thus, it receives the ambiguity class IN/RB/RP (as does of ). With the assignment

of complex ambiguity classes, the probabilities in the altered model are quite differ-

ent. We see a much stronger probability for $ conditioned on RB (technically, on

<IN/RB/RP,RB>) when we have complex ambiguity tags (4.79 times more likely),

as shown in (65).

(65) a. p($| < IN/RB/RP, IN >, < IN/RB/RP, RB >) = .6016

b. p($| < IN/RB/RP, IN >, < IN/RB/RP, IN >) = .1256

What we witness is that RB applied to a word which has an ambiguity class of

IN/RB/RP behaves differently than the general class of RB words. We are given an

indication that, for IN/RB/RP words, RB is a significantly more probable in this

context than IN.
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We have just shown that the contextual probabilities of an n-gram tagger are

affected when using ambiguity tags as part of a complex tag, but we also gain in-

formation about lexical probabilities in the process. The original pertinent emission

probabilities were as in (66), but for the transformed corpus, we have the probabilities

as in (67).

(66) a. p(about|IN) = 2074/134926 = .0154

b. p(about|RB) = 785/42207 = .0186

(67) a. p(about| < IN/RB/RP, IN >) = 2074/64046 = .0324

b. p(about| < IN/RB/RP, RB >) = 785/2045 = .3839

The most striking difference between these two sets of emission probabilities is how

much more likely RB is in the complex ambiguity model (67) than in the unaltered

model (66). This difference comes about in the following way: from (67), we can

deduce that, in comparison to all other words out there which are IN/RB/RP, about

has a much greater chance of resolving to RB. That is, IN is generally about 31

(64046/2045) times more likely than RB for IN/RB/RP words, but for about, IN is

only 2.6 (2074/785) times more likely. So, when calculating the conditional probabil-

ity of about, conditioning on RB (i.e., <IN/RB/RP,RB>) results in a much higher

probability than conditioning on IN: within this ambiguity class, about is much more

likely to be RB. Thus, we are able to derive information similar to that found in a

lexicalized tagger—i.e., about behaves differently than the rest of its class—but we

still are able to bring general IN/RB/RP class information to bear on this tagging

situation.

The information given by using ambiguity classes is able to help correctly assign a

tag for a word, but it is only helpful as long as two conditions are met: 1) we have the

correct ambiguity class for that word, and 2) the patterns for these (ambiguity) classes
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were followed more often for the correct case than the incorrect case(s). The hope

is that, since variation errors are errors for words with prominent ambiguity classes,

zeroing in on these ambiguity classes will provide more accurate probabilities. By

adopting this approach, we are mimicking what annotators were instructed to focus

on, namely “difficult tagging decisions,” or “confusing parts of speech” (Santorini,

1990, p. 7).

Results of using complex ambiguity tags

We will show that the results of using complex ambiguity tags for correction are

quite promising, but to begin with we can look at some basic numbers. Whereas

there were originally 80 tags in the corpus,91 there are now 418 tags, 53 of which are

simple (e.g. IN) and 365 of which are complex (e.g. <IN/RB,IN>).

TnT When we look at the 300 hand-annotated samples of variation positions from

the Wall Street Journal corpus for the TnT tagger, we find that 260 spots are indeed

correctly tagged, for a precision of 86.67%. Breaking this down a bit, as shown in

figure 5.11, we find 86.36% precision for tags which have been changed from the

original corpus and 86.79% precision for unchanged tags. Precision values are slightly

lower but comparable when no smoothing is used; note, too, that fewer positions are

changed (79 changes without smoothing, 88 with smoothing).

91The number of tags here includes tags with vertical slashes in the original corpus.

182



Changed Unchanged Total

Regular TnT 68.47% (76/111) 87.30% (165/189) 80.33% (241/300)
No smoothing 70.64% (77/109) 89.01% (170/191) 82.33% (247/300)

Complex TnT 86.36% (76/88) 86.79% (184/212) 86.67% (260/300)
No smoothing 86.08% (68/79) 85.07% (188/221) 85.33% (256/300)

Figure 5.11: Results of using TnT with complex ambiguity tags

With the 86.36% precision for changed positions, what this means for error correc-

tion is that for the 5373 changes that the tagger makes, out of 21,575 flagged positions,

we expect approximately 4640 of those changes to be correct changes. (The 95% con-

fidence interval predicts between 4255 and 5025 changes.) We will return to these

numbers in section 6.5.

Note that this corrected corpus is much better than the original “gold standard”

corpus, which had a precision of only 76.67% (230/300) for the 300 samples. And we

have also drastically improved upon the output of running TnT with no adjustments

to the corpus, especially for changed positions. That method gave us a precision

of 80.33% vs. 86.67% here. An even greater improvement is seen in the changed

positions, where the unaltered TnT had 68.47% precision vs. 86.36% here.

One might wonder whether we are just doing a better job overall of tagging the

corpus, and this is to some extent true. Training TnT on the original corpus without

making any transformations and then testing on the same corpus results in a corpus

which is 97.37% the same as before. However, with the complex tags which include

ambiguity class information, the resulting corpus is now 98.49% similar to the original.

So, clearly, the model is a closer fit to the original corpus.
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It is not necessarily the case, however, that it is a better general tagging model.

To test this, we split the corpus into 90% training data and 10% testing data and

found that the original TnT gets a 96.54% match with the testing data, while the

altered TnT is slightly better, matching 96.69% of the testing data. It might be the

case that the altered TnT is tagging erroneous positions correctly, but without further

testing, we can draw no firm conclusions.92

What we can say, however, is that this work lends empirical evidence to the theo-

retical result in Padro and Marquez (1998) that two taggers which have similar preci-

sion scores on a benchmark corpus have different precision scores on the actual truth.

This conclusion is further confirmed by other results we have seen in this chapter: we

saw very high precision scores for the whole corpus with TiMBL (section 5.3.4), but

the precision with respect to the corrections was very poor.

Taking the results in another direction, we can use information about when the

altered model disagrees with the original model to improve our recall. More specif-

ically, we can sort the complex tags into groups, based on whether they agree with

the unaltered TnT or not. To improve recall, we need to look at the corpus positions

which the tagger did not change and find out which ones it should have changed.

A suitable set of examples to examine is the set of unchanged positions which the

original unaltered tagging model changed—the unchanged positions where the two

models disagree in figure 5.12. This is indeed the space of corrections which has the

worst precision and likely needs manual correction. Examining these 44 instances by

hand would result in 13 more corrections. If these proportions remained true over all

92Note that this experiment does not show that we can necessarily use a tagger with complex
ambiguity tags to improve the tagging process in general, as our complex ambiguity tags were
derived from 100% of the corpus. Further work needs to go into deriving complex ambiguity tags to
apply them to unseen text.
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21,575 flagged positions, that would give us 935 more corrections out of 3164 more

possibilities. One would have to consider the tradeoff between such a low precision

(29.54%) and the gain in recall, but in some applications this would be worthwhile.

Changed Unchanged
yes maybe no Precision yes maybe no Precision

Altered 66 10 12 86.36% 171 13 28 86.79%
Agree 47 8 9 85.94% 144 9 15 91.07%
Disagree 19 2 3 87.50% 27 4 13 70.46%

Figure 5.12: Fine-grained results of TnT with complex ambiguity tags

Looking at this issue slightly differently, we can first note that of the 68 spots

of disagreement, at least one of the taggers is right in 64 spots, showing that tagger

combination is possible. Examining the disagreements more closely to find where

one tagger is right to the exclusion of the other, we find that the complex tagger is

correct 31 times and the simple tagger is correct only 12 times. Thus, a voter which

is weighted favorably towards the TnT tagger with complex ambiguity tags could in

principle do quite well. We tested no such voting scheme here, however, and note

that the distribution of correct tags between simple and complex taggers is more even

in the case of the decision tree tagger (see next section).

On a different note, we mentioned earlier that a key question for using complex

ambiguity classes is: what ambiguity tag (or ambiguity class) should every word

get? We experimented with different methods for ambiguity class assignment for

TnT: assigning tags to variation positions and randomly selecting at other times; not

185



giving non-variation words ambiguity tags; limiting the number of tags in a class to

two; etc. Interestingly, regardless of the particular technique, we always have results

in the 82-87% precision range for TnT. The reason, to be discussed in section 5.4.4,

is that the different methods seemed to always encounter the same problems.

Decision Tree Tagger We also used complex ambiguity tags with the Decision

Tree Tagger, and the results are given in figure 5.13. As with the n-gram tagger, we

see an improvement in tagging—from 84% to 86%—but not as great an improvement

as with the TnT tagger. There is, however, a noticeable difference for the positions

which the tagger changed: whereas before the accuracy was around 73-74%, we now

see results around 86%.

Changed Unchanged Total

Default 86.21% (75/87) 85.92% (183/213) 86.00% (258/300)
Using tags 85.88% (73/85) 86.05% (185/215) 86.00% (258/300)

Figure 5.13: Results of running the Decision Tree Tagger with ambiguity tags on the
300 samples

And we also see less changes overall. So, the tagger is changing fewer items

but changing roughly the same amount of items correctly, thus resulting in a higher

precision. In fact, of the 87 changes the tagger now makes, 65 are the same changes

that it made with regular tags (and 57 of the 65 are correct changes, or 87.69%), so

it really is a case where the tagger is just now being more selective in its changes.
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The decision tree taggers trained on different tagging models (unaltered vs. al-

tered) disagree in 64 out of 300 cases. Of these 64 spots where the taggers disagree

(42 where the simple tagger changed the tag; 22 where the complex tagger changed

it), in 60 spots at least one tagger got it right. This tells us that there is hope in

combining these methods. But combination must be done carefully, as neither tag-

ger significantly outperforms the other on the disagreement data: when one tagging

method is correct to the exclusion of the other, the method with complex tags is

correct 20 times, while the regular DTT method is correct 17 times.

It is useful to examine their differences, with an eye towards possibly being able

to combine the methods. For example, of the 21 cases where at least one tagger made

a change involving a JJ/NN ambiguity, the simple tagger chose JJ 19 times. With

more information about what kind of distinction is relevant, the complex tagger has

less of a bias and is able to select NN 10 times.

There is also hope in combining taggers with completely different algorithms:

where one algorithm fails, another can succeed. Of the 300 samples, when using

complex ambiguity classes, the decision tree tagger (DTT) and TnT disagree in 25

spots. We should note several things from this.

The first is that there are only 25 differences, whereas there were 64 differences be-

tween the simple and complex ambiguity tag-trained taggers using the same decision

tree algorithm. This shows that the division of the tagset makes more of an impact

than the algorithm underlying the method, at least for these purposes. Thus, using a

combination of classifiers for correction most likely depends not on which algorithm

we select, but on how we alter that algorithm for our purposes.
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Another noteworthy item is that it is always the case that one of the taggers gets

the tag right, but one tagger is not necessarily better than the other. Of the 14 times

when one tagger is right to the exclusion of the other, TnT gets 7 right and DTT gets

7 right. Furthermore, we can see certain biases in what the algorithms are doing. For

example, in the 10 cases where JJ/NN (adjective/noun) is the relevant ambiguity,

TnT always selects JJ, while DTT always selects NN. Although this might seem to

indicate that combining tagging algorithms will simply result in indecision, this is not

necessarily a bad thing. Of these 10 cases, human evaluation could not completely

determine whether JJ or NN was correct for 9 of them.

TiMBL Building on the success of using ambiguity class information for HMM and

decision tree tagging, we attempted to use this information in TiMBL.93 However,

because cases in TiMBL are vectors of features, we had more options to work with.

We tried three methods, as exemplified in figure 5.14: 1) using complex ambiguity

tags for the features and for the class TiMBL learns, akin to the HMM task (Complex );

2) using a complex ambiguity tag for the class TiMBL learns, but using simple tags

for all the features (Mixed); and 3) using simple tags throughout, but adding an extra

feature which is the ambiguity class (Extra).

w t−2 t−1 t+1 t+2 (amb.) tag

Complex as DT <NN/VB,NN><DT/SYM,DT>JJ <IN/RB,IN>

Mixed as DT NN DT JJ <IN/RB,IN>

Extra as DT NN DT JJ IN/RB IN

Figure 5.14: Examples of different methods employing ambiguity classes

93For efficiency reasons, we did not test the Brill tagger with complex ambiguity classes.
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The results of using each method are given in figure 5.15. As we can see, none

of these different methods seems to dramatically affect the precision results. It is

possible that increasing k to 3 or 4 would improve the results, similar to the patterns

observed for the unaltered results; but given the similarity here to the unaltered k = 1

case and the drastic increase in time for tagging with complex tags and larger values

of k, we do not pursue that here.

Changed Unchanged Total

Complex 75.0% (27/36) 78.79% (208/264) 78.33% (235/300)
Mixed 75.56% (34/45) 79.61% (203/255) 79.0% (237/300)
Extra 75.61% (31/41) 78.38% (203/259) 78.0% (234/300)

Figure 5.15: Results of using different methods employing ambiguity classes

5.4.3 Summary for correction methods

Figure 5.16 gives the best results obtained for the three different classification

approaches after replacing each corpus tag with a complex ambiguity tag. We see that,

although the results for TiMBL are no better than before, we now have 86% precision

on both the changed positions and for the overall accuracy on all 300 positions for

both TnT and the Decision Tree Tagger. This is better than the previous best of 84%

and also quite a deal better than the previous best of 76% on the changed positions.
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Method Changed Unchanged Total
TnT 86.36% (76/88) 86.79% (184/212) 86.67% (260/300)
DTT 86.21% (75/87) 85.92% (183/213) 86.00% (258/300)
TiMBL 75.56% (34/45) 79.61% (203/255) 79.0% (237/300)

Figure 5.16: The best correction results with complex ambiguity tags

The results are highly improved, allowing for better correction, in the form of a

corpus which is more correct than it was originally, but they are still obviously not

100% accurate. In the next section, we discuss the reasons why we cannot obtain

completely automatic correction, and in the next chapter we propose ways of using

this classifier-based correction as part of a semi-automatic correction process.

5.4.4 Remaining problems

Despite the promising results obtained with complex ambiguity tags, there are still

several issues to consider in order to improve upon these results. For some of these

problems, we can attempt some solutions at this time, but for others, the problem

is much more persistent and seems to require manual intervention or much more

sophisticated processing.

The first point is that some distinctions simply cannot be handled by most any

automated system of the kind we have been using, i.e., without semantic or non-

local information. As Marquez and Padro (1997) point out, distinctions such as

that between an adjective (JJ) and a past participle (VBN) are essentially semantic

distinctions and do not have any structural basis. Since our method uses no external
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semantic information, we have no way to know how to correct this.94 For example, in

the phrase proposed offering, the reason that proposed should be VBN is that it can

be rephrased as an offering that was proposed and indicates a specific event, facts not

easily deduced in a data-driven, automatic way.

Other distinctions, such as the one between a past tense verb (VBD) and a past

participle (VBN), require some form of non-local knowledge in order to disambiguate

because it depends on the presence or absence of an auxiliary verb, which can be

quite far away. (See 2.2.1 under Distrust the fringe for a more complete discussion of

this tag distinction.)

Secondly, sometimes the corpus was more often wrong than right for a particular

pattern. This can be illustrated in the following example, focusing on the word later :

at position 12,136 of the corpus, we find the following: Now , 13 years later , Mr.

Lane has revived his Artist ... On page 25 of the tagging manual (Santorini, 1990),

we find the description of later, as shown in (68).

(68) later should be tagged as a simple adverb (RB) rather than as a comparative

adverb (RBR), unless its meaning is clearly comparative. A useful diagnostic is
that the comparative later can be preceded by even or still.

EXAMPLES: I’ll get it [sic] around to it sooner or later/RB.
If you don’t hurry, we’ll arrive (even) later/RBR than your mother.

In this particular case, along with the fact that this is 13 years later as compared

to now (i.e. comparative), one can say Now, (even) 13 years later, Mr. Lane has

revived his Artist ..., favoring RBR as a tag.95 But the trigram years later , occurs

94Note, though, that detecting an error between the two tags works quite well. It could be argued
that this lack of a structural distinction contributed to the inconsistency among annotators in the
first place and thus made error detection successful.

95Note that there may be some level of disagreement between potential annotators here.
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16 times, 12 as RB and 4 as RBR. So, assuming RBR is correct, we clearly have a

lot of wrong annotations in the corpus. And we can see in (69) that in the context of

following CD and NNS, RBR is much less likely than either RB or JJ for TnT.

(69) a. p(JJ |CD, NNS) = .0366

b. p(RB|CD, NNS) = .0531

c. p(RBR|CD, NNS) = .0044

As shown in (70), even when we use complex ambiguity tags, we still find this

favortism for RB because of more wrong data in the corpus. As a side point, however,

we can note that although RB is now favored, its next closest competitor is now

RBR—not JJ—and RB is no longer favored by as much as it was over RBR. For

words with a JJ/RB/RBR ambiguity class, JJ is not as much of a serious option

in this context. It seems that we have more appropriately narrowed down the list

of proper tags for this position by using complex ambiguity tags, but because of an

overwhelming incorrect use of RB, we still generate the wrong tag. For this kind of

error, there seems to be no way to automatically correct it.

(70) a. p(< JJ/RB/RBR, JJ > |CD, NNS) = .0002

b. p(< JJ/RB/RBR, RB > |CD, NNS) = .0054

c. p(< JJ/RB/RBR, RBR > |CD, NNS) = .0017

Finally, certain tags are simply too problematic to reliably disambiguate. Despite

getting 86.67% overall precision with this altered tagging model, certain tags such

as IN (preposition) were wrong much more often than other tags. We will turn to a

solution for automatically identifying these problematic tags in section 6.2.
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5.5 BNC-sampler

Using the best results obtained from our experiments with the WSJ, we also ran

these classification methods on the BNC-sampler. Recall from chapter 2 that the

overall precision of the variation n-gram error detection method was lower than for

the WSJ, so we expect that correction precisions will also be lower.

We again annotated 300 samples, randomly obtained from the set of all tokens

corresponding to non-fringe variation trigrams in the BNC-sampler. The first thing

to note is that, of the hand-annotated 300 samples, 258 are correct, 8 are possibly

correct, and there are only 34 of them which are incorrect in the original BNC-sampler

annotation; compare the 70 incorrect cases in the parallel WSJ 300 samples. The

precision figure for the 300 variation-flagged samples is 88.67% (266/300), providing

a baseline for our correction methods to beat.

The lower precision is attributable to a couple of different factors. Firstly, as

discussed in section 2.3.1, we have lower precision in error detection in the BNC-

sampler than in the WSJ (due to tagset distinctions and spoken language). Secondly,

the BNC-sampler has a much lower estimated error rate than the WSJ. Note, though,

that there is a tenfold difference in reported error rates between the 3% in the WSJ

and the 0.3% in the BNC-sampler. The difference in error rates of the 300 samples

is only twofold. There are two possible interpretations for this: either the difference

between the two corpora is not as great as reported or the variation n-gram method

has successfully identified a higher percentage of positions in the BNC-sampler than

in the WSJ which are problematic.
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TnT First, we ran TnT, with normal tags and also with complex ambiguity tags.

Complex ambiguity tags were derived for the BNC-sampler in exactly the same way as

for the WSJ, as described in section 5.4.2, p. 174ff. Results are shown in figure 5.17.

changed unchanged total

Regular 46.00% (23/50) 93.20% (233/250) 85.33% (256/300)
Ambclass 43.75% (14/32) 91.79% (246/268) 86.67% (260/300)

Figure 5.17: Results of running TnT on the BNC-sampler

Overall, we get about the same results as with the WSJ, if not better, with

approximately 85-85% precision (but note that we are now below the baseline of

88.67%). However, we change very few tokens (32-50) and only get a precision in

the mid-40% range for these changes. There are two things to note, though, before

continuing: 1) The precision on the unchanged results is actually higher than the

baseline, i.e. we are doing a good job of not changing when we do not need to. 2)

Of the 23 changes we made which are acceptable (yes or maybe), 17 of those were

unacceptable in the original corpus (the other 6 being maybes). This means that the

recall is 50% (17/34) and furthermore, that unclear/maybe cases are falling into the

changed category.

Decision Tree Tagger We then ran the Decision Tree Tagger. As with our results

from the WSJ, the results in figure 5.18 follow the TnT results closely, except for

being slightly higher, and so we do not comment on them here.
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Changed Unchanged Total

Regular 47.73% (21/44) 92.19% (236/256) 85.67% (257/300)
Ambclass 50.0% (17/34) 92.11% (245/266) 87.33% (262/300)

Figure 5.18: Results of running the Decision Tree Tagger on the BNC-sampler

TiMBL Finally, we ran the method with TiMBL, using values of 1, 3, and 4 for

k. We again obtained results which were less accurate than for the WSJ method, as

shown in figure 5.19. A few comments are in order. As with the WSJ results, TiMBL

makes very few changes when k is equal to one and so seems to be of little use for

our purposes. Forcing TiMBL to make more changes, however, brings with it a much

lower accuracy.

One positive side—which we will return to in section 6.5—is that increasing k gives

us more recall of the tokens which absolutely needed to be changed. For example,

with k equal to four, we have 64 cases to sort through, and even though we only get

19 of them correct, there are 20 cases which needed to be corrected in this set of 64

(58.8% of the 34 which needed correction).

k Changed Unchanged Total

1 53.33% (8/15) 90.88% (259/285) 89.00% (267/300)
3 31.48% (17/54) 93.50% (230/246) 82.33% (247/300)
4 29.69% (19/64) 94.07% (222/236) 80.33% (241/300)

Figure 5.19: Results of running TiMBL on the BNC-sampler
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5.6 Summary for automatic correction

In this chapter, we have demonstrated the efficacy of using automatic methods

of classification for correcting a corpus, by isolating those spots identified by the

variation n-gram method as potential errors. Combining the process of token error

detection and correct label assignment into a single step, we first showed that simply

using a tagger as is provides only moderate results, but adapting a tagger to account

for common ambiguities in the data—i.e., using complex ambiguity tags—can perform

much better than an unmodified tagger and reduce the true error rate within a corpus.

Despite the gain in accuracy, we pointed out that there are still several residual

problems which would be difficult for most any automatic tagger to overcome. Thus,

in the next chapter we pursue two lines of thought. One is to automatically sort the

tags so that the difficult tagging decisions can be dealt with differently from the easily

disambiguated corpus positions. The second line of thought is to pull apart the task

of token error detection from automatic correction.

The method of adapting a tagging model by using complex ambiguity tags origi-

nated from an understanding of how the general tagging process works, namely that

taggers attempt to disambiguate items which behave similarly. Based on this notion,

the classification work described in this chapter can be extended to the general task

of part-of-speech tagging. Our results indicate that a tagger using complex ambiguity

classes could be better at tagging than its counterparts, as it attempts to tackle the

difficult distinctions in a corpus. Such a tagger could also be useful as a part of a

combination of taggers, as it provides different information. To pursue these avenues

of research and to determine if this is a generally applicable method, work has to go
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into defining ambiguity classes for words in a new text, given that we do not have the

same unigram/trigram information in new text that we have in the variation n-gram

output.
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CHAPTER 6

IDENTIFYING AUTOMATICALLY CORRECTABLE
ERRORS

6.1 Introduction

Continuing with the goal introduced in the last chapter of automating the process

of correcting corpus annotation errors, we here attempt to automatically sort such

errors to assist in correction. We have gone from the variation n-gram method of

error detection for POS annotation in chapter 2 directly to automatically correcting

those errors in chapter 5. Aside from using the variation n-gram output to identify

which corpus positions to focus on, we initially used no other information provided by

the variation n-gram method. When we began to use more information, in the form

of deriving ambiguity classes to alter the tagging model, as described in section 5.4,

we saw an improvement in correction.

But the amount of information from the variations that we used in section 5.4 was

very minimal, and our best results were 86.67%, leaving much room for improvement.

Thus, we want to do at least two things: bring more information from the variation

n-gram output to bear on the issue of what the correct tag is for a corpus position, and

use the classifier-based correction as part of a larger semi-automatic corpus correction

effort, similar to the design of corpus annotation efforts (see chapter 1).
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To fold the automatic correction stage into a semi-automatic corpus correction

process, we can sort the classifier correction output into different classes of reliability,

in order to prioritize the most reliable corrections first and to know which corrections

need manual verification. But how are we to sort the correction output? The meth-

ods we will discuss in this chapter all share in common the property of using more

information from the variation n-gram output in order to gauge what kinds of errors

can reliably be fixed.

Ideally, we can sort corpus positions into two groups: those which need human

assistance and those which can reliably be automatically corrected. But sorting the

correction output is only one way to use the correction output. In the last chapter, we

alluded to using the automatic correction output completely as a form of token error

detection. Isolating those spots identified by the tagger as needing to be changed, we

can then back off to complete manual correction.

Thus, in this chapter we first explore various options for sorting, based on informa-

tion present in the variation n-gram output. These sorting methods include: using

n-gram information to identify particularly problematic distinctions in section 6.2;

using information from the label with a majority of occurrences in a trigram in sec-

tion 6.3; and using information from the distribution of tags in a trigram in section 6.4.

Finally, in section 6.5, we back off from fully automatic correction to using our devel-

oped methods for token error detection with suggestions for corrections, akin to work

in improving annotation efforts more broadly (cf. Brants and Plaehn, 2000).
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6.2 Identifying problematic distinctions

It would be very useful if we could identify tags that a tagger does not consistently

use correctly. As mentioned in section 5.4.4, a tag like preposition (IN) or adverb

(RB) is often hard for a classifier to disambiguate in our sample set because these

tags vary so much in the original data. Since this problem arises due to properties

found in the data—unlike some other problems mentioned in that section—there is a

chance that we could find some way to automatically identify these problematic tags.

One idea for identifying problematic tags is based on determining how often a

particular tag varies within a context. Words are generally ambiguous, but if a

variation between two or more tags persists within a context, it may be the case

that annotators had difficulty making this distinction. The variation n-gram method

provides the information we need to find problematic tags. The way we identify

problematic tags is described below and is given in an overview in figure 6.1.

1. Calculate the set of unigram variation pairs and their (type) frequencies.

2. Calculate the set of non-fringe variation pairs and their (type) frequencies.

3. Calculate the relative frequency of variation pairs.

4. Extract individual tags and add up their frequencies.

Figure 6.1: The procedure to find the most problematic tags in the corpus
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In step one, we calculate the set of variation pairs over the whole corpus: for every

variation unigram, we count up how often each variation type occurs. The variation n-

gram approach provides sets of tags, but we are interested in pairs of tags in variation

because the Penn Treebank tagging guidelines (Santorini, 1990) and others represent

difficult decisions as choices between two tags. Following this practice also prevents

data sparseness, e.g., in the case of a variation between four tags. Thus, we separate

variation between multiple tags into unordered pairs: e.g., variation between three

tags becomes three variations between two tags. For example, if a word varies between

IN, RB, and RP, we count one of each of the following pairs: IN and RB, IN and RP,

and RB and RP.

Step two involves calculating a second set of pairs, namely the set of varying tags

which remain in context—the non-fringe variation tags. This set is taken directly

from the variation trigrams. We count how often each variation type occurs in the

same way as the unigrams.

From these two sets, in step three we can derive a simple metric which indicates

how often a particular tag pairing is not disambiguated. To do this, we take a

particular tag pairing and divide its count of contextual occurrences by its total

number of occurrences, as given in (71).

(71)
# non-fringe types

# total types

Generally speaking, the higher the value, the harder it was to disambiguate those tags

in different contexts, either because the distinction is non-local or the distinction is

difficult to make reliably. If a pairing gets a score of zero, it is always disambiguated

in context. The highest score is unbounded since, due to the fact that we count by

types, and that a single unigram type can result in multiple trigram types, scores
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often exceed 1.96 The highest score is 17.5 for POS (possessive ending) and VBZ

(third person singular present verb), which reflects a tag distinction that is often

non-local.

Outside of this one variation, the individual tags POS and VBZ are not as dif-

ficult to resolve in context. Furthermore, the metric we have above heavily favors

distinctions which only apply to a few number of word types—in this case, only two

(’s and ’S )—since the denominator will be low. One way to overcome this limitation

of the metric is to instead focus on individual tags which frequently contribute to

problematic distinctions.

And so in step four, we find out which particular tags are likely to be the most

problematic for a tagger to assign. To do this, we pull out individual tags from each

tag pairing and add up their scores. For example, for IN we add 12.5 for DT/IN,

7.0 for IN/RP, 6.53 for IN/RB, and so on down to 0.048 for IN/NN, giving a total

of 35.82. The intuition here is that if a single tag is often not disambiguated for a

variety of words and with a variety of other tags, that tag is likely to be difficult to

reliably assign. The five highest-ranked and likely most problematic tags are given

in figure 6.2,97 and we will show that the top-marked ones are indeed difficult for

taggers to assign.

9631 of the 327 tag pairings have values greater than 1; 169 have values of zero and so are
not problematic at all. They might, however, be worth investigating to see if their low frequency
variations should vary at all.

97The tags have the following meanings (Santorini, 1990): IN = preposition or subordinating
conjunction, DT = determiner, RB = adverb, VBZ = third person singular present verb, POS =
possessive ending.
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Tag Score
IN 35.82
DT 35.78
RB 28.16
VBZ 18.63
POS 18.5

Figure 6.2: The most problematic tags in the WSJ

6.2.1 Filtering problematic tags for TnT

In chapter 5 we tried various automatic correction methods for POS annotation

by examining how different tagging models performed on positions flagged by the

variation n-gram method as potential errors. To find out how problematic the three

highest-ranked tags are in this context, we experimented with filtering out the prob-

lematic tags from the automatic correction output. Specifically, we remove the corpus

occurrence from evaluation for a tagger if the tagger has assigned the problematic tag

in question. We ignore the original tag here because we are interested in tags which

are hard for a tagger to distinguish.

Filtering out the tags for the TnT automatic correction output (see section 5.3.1),

we see a gradual increase in precision when removing the problematic tags from the

evaluation, as shown in figure 6.3.98

In chapter 5 we improved tagger performance by using complex ambiguity tags

(see section 5.4), and we here evaluate the effect of filtering out problematic tags in

figure 6.4. We can see that removing the two worst tags (IN and DT) gives us a

98As in chapter 5, we here report precision figures for the corpus positions in the benchmark which
the tagger changed, the positions it did not change, and its performance overall on the variation-
flagged samples.
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Removed tag(s) Changed Unchanged Total

(none) 68.47% (76/111) 87.30% (165/189) 80.33% (241/300)
IN 74.49% (73/98) 90.45% (161/178) 84.78% (234/276)
IN,DT 74.23% (72/97) 91.28% (157/172) 85.13% (229/269)
IN,DT,RB 76.74% (66/86) 91.56% (141/154) 86.25% (207/240)

Figure 6.3: TnT results when filtering out the three most problematic tags

total of 89.89% precision and in so doing only sets aside 23 (out of 300) tags to be

hand-examined. The slight drop in performance in filtering out RB indicates that the

tagger’s performance on RB is actually better than the overall TnT performance and

illustrates the point that we do not want to filter out too many tags.

Removed tag(s) Changed Unchanged Total

(none) 86.36% (76/88) 86.79% (184/212) 86.67% (260/300)
IN 88.09% (74/84) 89.60% (181/202) 89.16% (255/286)
IN,DT 87.95% (73/83) 90.72% (175/194) 89.89% (249/277)
IN,DT,RB 87.32% (62/71) 89.87% (151/166) 87.32% (213/237)

Figure 6.4: TnT results with complex ambiguity tags when filtering out the three
most problematic tags

Assuming that human effort will result in 100% correction for the 23 samples of

IN and DT-tagged positions, this would mean that we will get 272 out of 300 correct,

or 90.67%. But how much human effort will this require? Of the 21,575 variation
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positions, 755 are IN and 227 are DT, adding up to 982 total positions to check by

hand. And if we only wish to check the changed positions, there are only 225 (170

IN and 55 DT).

We can thus see that sorting tags based on an automatic metric of how problematic

they are can be quite useful. Perhaps a better metric can be derived, by basing it

on token counts, but using something as simple as the metric we calculated, we have

obtained good results.

We have discussed removing the tags based on the resolved tag which the tagger

assigned, but for the model with complex ambiguity tags we have more information

than that in the ambiguity class. Instead of removing the worst tag (IN), we can

instead try removing all tags where the worst tag was a part of the ambiguity class.

This, however, is not as effective. When removing the tags for any spot which has IN

in its ambiguity class, we obtain a precision of 87.55% (211/241) (85.71% (60/70) for

changed positions, 88.30% (151/171) for unchanged), and in the process we remove

59 tags, out of the 300. The performance is worse because some of the tags that IN

is in variation with are much less problematic.

6.2.2 Filtering problematic tags for the Decision Tree Tagger

We find comparable results for the Decision Tree Tagger (see section 5.3.2) on

the 300 samples as we did with the TnT tagger, as shown in figures 6.5 and 6.6.

As described earlier for figure 5.2, we used the defaults for the system in one case

(Default) and assigned every non-variation position its original tag in the other (Using

tags). We make no further comment here.
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IN? Changed Unchanged Total
Default YES 73.83% (79/107) 90.15% (174/193) 84.33% (253/300)
Default NO 77.78% (77/99) 91.85% (169/184) 86.93% (246/283)

Using tags YES 72.82% (75/103) 89.34% (176/197) 83.67% (251/300)
Using tags NO 76.84% (73/95) 91.44% (171/187) 86.52% (244/282)

Figure 6.5: Decision Tree Tagger results when filtering out IN

IN? Changed Unchanged Total
Default YES 86.21% (75/87) 85.92% (183/213) 86.00% (258/300)
Default NO 89.02% (73/82) 89.00% (178/200) 89.01% (251/282)

Using tags YES 85.88% (73/85) 86.05% (185/215) 86.00% (258/300)
Using tags NO 88.75% (71/80) 89.11% (180/202) 89.01% (251/282)

Figure 6.6: Decision Tree Tagger results with ambiguity tags when filtering out IN

6.2.3 Filtering problematic tags for the Brill Tagger

Removing IN tags from the output of the Brill tagger (using all 26 templates,

described in section 5.3.3) also results in higher precision values, as shown in figure 6.7.

Note that the Brill tagger performs equally well for the threshold values of 7, 10,

and 15 after removing IN from evaluation. This indicates that their (already small)

differences in precision were mostly due to this single difficult tag.
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Threshold IN? Changed Unchanged Total
7 YES 75.79% (72/95) 83.41% (171/205) 81.00% (243/300)
7 NO 80.95% (68/84) 88.24% (165/187) 85.98% (233/271)

10 YES 75.00% (69/92) 84.13% (175/208) 81.33% (244/300)
10 NO 80.25% (65/81) 88.48% (169/191) 86.03% (234/272)

15 YES 74.49% (73/98) 85.64% (173/202) 82.00% (246/300)
15 NO 79.31% (69/87) 88.83% (167/188) 85.82% (236/275)

20 YES 70.59% (72/102) 84.85% (168/198) 80.00% (240/300)
20 NO 76.40% (68/89) 88.04% (162/184) 84.25% (230/273)

Figure 6.7: Brill Tagger results when filtering out IN

6.2.4 Filtering problematic tags for TiMBL

Identifying and removing problematic tags shows much promise as an aid in error

correction on all three taggers we have looked at. It seems that this is even more the

case with an MBL system: removing the two most problematic tags (IN and DT)

from the automatically-corrected set drastically improves the results, especially on

changed positions.

Using the default options (see section 5.3.4), we can compare the results of a

regular run of TiMBL with the results after removing IN, as shown in figure 6.8.

Recall, too, that the best results were obtained for k = 3 and k = 4, with the other

options remaining as the defaults. After removing IN, we find even better results,

with k = 3 being the best.

The results improve even more when we remove both IN and DT, the two most

problematic tags, as shown in figure 6.9, so much so that we begin to approach the

level of accuracy we obtained with an n-gram tagger. With k = 3, for example, we

went from 79.33% (238/300) total accuracy to 88.08% (229/260) total accuracy.
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k IN? Changed Unchanged Total

1 YES 74.42% (32/43) 78.99% (203/257) 78.33% (235/300)
1 NO 81.58% (31/38) 82.08% (197/240) 82.01% (228/278)
3 YES 76.19% (64/84) 83.80% (181/216) 81.67% (245/300)
3 NO 82.19% (60/73) 88.38% (175/198) 86.72% (235/271)
4 YES 73.33% (66/90) 85.24% (179/210) 81.67% (245/300)
4 NO 77.50% (62/80) 89.17% (173/194) 85.77% (235/274)

Figure 6.8: TiMBL results when filtering out IN

k IN,DT? Changed Unchanged Total

3 YES 76.19% (64/84) 83.80% (181/216) 81.67% (245/300)
3 NO 84.29% (59/70) 89.47% (170/190) 88.08% (229/260)
4 YES 73.33% (66/90) 85.24% (179/210) 81.67% (245/300)
4 NO 79.22% (61/77) 89.84% (168/187) 86.74% (229/264)

Figure 6.9: TiMBL results when filtering out IN and DT

The question, then, is why do we see so much change? Or, to phrase it differently,

why is TiMBL even more inaccurate at tagging the most problematic tags than TnT

or DTT? To answer that, we first must remember that TiMBL is matching the data

as well as it can, and that we have shown these tags to be problematic in various

contexts. So, when one tries to match the data, one will just as often as not guess

the wrong variation tag.

Another difference is that a tagger like TnT can be swayed by large probabilities

in a given context. TiMBL, on the other hand, has a single way of weighting features

which applies over the whole corpus. For example, in the context preceding $, we see

that the chance of about being tagged RB (vs. IN) increases significantly for TnT
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(see section 5.4 under The rationale for complex ambiguity tags). When we look at

the same corpus position (1346) for TiMBL, we are looking at static features (not

influenced by the surrounding choices of tags by TiMBL) and we do not know which

feature is locally the most important tag or how important that feature is. That is,

we find the following for about, where IN was selected by the tagger for this position.

(72)
w t−2 t−1 t+1 t+2 tag
about NN IN $ CD IN

Over the whole corpus, the feature for t+1 is the most important (using Gain

Ratio weighting), followed by t−1, but we do not know how important each is for this

position. All we know is the k-nn neighbors which match this situation. We do not

have a way to say that RB is more likely than normal for about when preceded by

IN and followed by $. If a lot of IN-tagged cases in memory also have NN and CD as

t−2 and t+2, respectively, then those suddenly have a much higher importance than

with the HMM tagger. And indeed the tag of RB is never given for about when the

first tag in the sequence is NN, even though the first tag is almost irrelevant for these

purposes.

6.2.5 BNC-sampler

We also derived the most problematic tag in the BNC-sampler, again by comparing

the tag variations in the trigrams with those in the unigrams. Interestingly, the

tag II (general preposition) was deemed the most problematic, parallel to the most

problematic tag in the WSJ (IN).

TnT By filtering out this tag, we obtain only very slightly better results for TnT,

as shown in figure 6.10. With some human assistance, however, we can identify more
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II? changed unchanged total

Regular YES 46.00% (23/50) 93.20% (233/250) 85.33% (256/300)
Regular NO 45.45% (20/44) 93.36% (225/241) 85.96% (245/285)
Ambclass YES 43.75% (14/32) 91.79% (246/268) 86.67% (260/300)
Ambclass NO 44.83% (13/29) 92.22% (237/257) 87.41% (250/286)

Figure 6.10: TnT results on the BNC-sampler when filtering out II

problematic tags in the error detection phase. As discussed in chapter 2, variations

involving verbal tags were particularly damaging to the variation n-gram error detec-

tion method. Thus, we can experiment with the results we get by removing verbal

tags from consideration. Although this may seem like a good idea in principle, in

practice it does little to change the outcome with respect to precision, as shown in

figure 6.11.

Verbs? changed unchanged total
Regular YES 46.00% (23/50) 93.20% (233/250) 85.33% (256/300)
Regular NO 50.00% (17/34) 90.74% (98/108) 80.99% (115/142)
Ambclass YES 43.75% (14/32) 91.79% (246/268) 86.67% (260/300)
Ambclass NO 47.62% (10/21) 87.80% (108/123) 81.94% (118/144)

Figure 6.11: TnT results on the BNC-sampler when filtering out verbal tags

Note, though, that most of the tags which we have removed did not need to be

changed, and so we have grouped the tokens into two classes: those more likely to

need fixing and those less likely. In the former case, we have non-verb tags, comprising

142 (144) examples. Of those, about 25 need repair. In the latter case, we have the
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problematic verbal tags, comprising 158 (156) examples. Of these only about 10 need

to be repaired. Thus, we see that the first class is about three times more likely to

need repair, promising results for token error detection.

Decision Tree Tagger Results for the decision tree tagger are virtually identical

to those for TnT in their slight improvements, as shown in figure 6.12, and so we

make no comment on them.

II? Changed Unchanged Total

Regular YES 47.73% (21/44) 92.19% (236/256) 85.67% (257/300)
Regular NO 48.65% (18/37) 92.28% (227/246) 86.57% (245/283)
Ambclass YES 50.0% (17/34) 92.11% (245/266) 87.33% (262/300)
Ambclass NO 55.17% (16/29) 91.80% (235/256) 88.07% (251/285)

Figure 6.12: Decision Tree Tagger results on the BNC-sampler when filtering out II

TiMBL As with the TnT and DTT work above, filtering out the most problematic

tag (II) for TiMBL does very little to improve accuracy, as shown in figure 6.13.

6.2.6 Summary for identifying problematic tags

Although the BNC-sampler results are still not as encouraging as with the WSJ,

the best results for the WSJ, as given in figure 6.14 for the four different tagging

approaches, are getting close to 90% correct. By identifying and isolating the most

problematic tag, the taggers are much more reliable.
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k II? Changed Unchanged Total

1 YES 53.33% (8/15) 90.88% (259/285) 89.00% (267/300)
1 NO 53.85% (7/13) 90.84% (248/273) 89.16% (255/286)
3 YES 31.48% (17/54) 93.50% (230/246) 82.33% (247/300)
3 NO 30.43% (14/46) 93.62% (220/235) 83.27% (234/281)
4 YES 29.69% (19/64) 94.07% (222/236) 80.33% (241/300)
4 NO 27.27% (15/55) 94.22% (212/225) 81.07% (227/280)

Figure 6.13: TiMBL results on the BNC-sampler when filtering out II

Tagger Changed Unchanged Total
TnT 88.09% (74/84) 89.60% (181/202) 89.16% (255/286)
DTT 89.02% (73/82) 89.00% (178/200) 89.01% (251/282)
Brill 80.25% (65/81) 88.48% (169/191) 86.03% (234/272)
TiMBL 82.19% (60/73) 88.38% (175/198) 86.72% (235/271)

Figure 6.14: The best results after removing IN

6.3 Majority label classification

In the previous section, we showed how information from the variation n-gram

output can assist in identifying problematic tags. In this section, we will show that

information about the distribution of tags within a trigram can further provide us

with an indication of the correct tag. We will use the majority tag from a non-fringe

variation trigram nucleus in two ways, first as a classifier in its own right and then as

part of a voting system of taggers.
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To see how informative the majority tag is for selecting the correct tag in a vari-

ation, we first selected the majority tag of a trigram variation nucleus as the correct

tag, dubbing this method “majority rules.”99 We use the non-fringe trigrams as we

have done before, with the added reason that the frequencies of tags in longer n-grams

are too small to be very informative. Taking the trigrams gives a better picture as to

how the tags generally pattern in a context.

With majority by itself we obtain moderate results, as shown in figure 6.15, where

we obtain a total precision of 82.5%. It uses a very informative context, that of the

surrounding lexical items, as opposed to many taggers which use the surrounding

tags. Such taggers look at tags in order to avoid data sparseness, but that is not as

much of a problem when training and testing on the same data. Even so, 20% of our

sample set (60 examples) have no majority tag—i.e., the tags occur an equal number

of times—and so are unable to provide a clear tag.

Changed Unchanged Total
78.43% (40/51) 83.60% (158/189) 82.5% (198/240)

Figure 6.15: The accuracy of the majority tag

Because a method using only the majority tag for correction considers no more

than the surrounding words and only the tag variations for that position, it needs

some assistance in sorting out the general corpus properties, i.e., what patterns the

99More properly, majority should be called plurality: there are some cases where the most frequent
tag occurs less than 50% of the time because there are more than two tags involved. It is possible
that these cases should be trusted less, but for now we treat them on par with the other cases, and
we use the term majority as a more intuitive mnemonic.
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tags normally follow in the corpus. Knowing that, for example, RB is more popular

than IN in a given variation takes no account of how RB and IN normally pattern.

More sophisticated classifiers sometimes do better than majority rules at correc-

tion because they consider more general properties. For the following, we will consider

the properties of an HMM tagger (TnT) for comparison to majority rules; most tag-

gers share these properties in one way or another. First, they have a more general

context of POS tags, which informs the tagger about how types of words generally

pattern. Secondly, they often use a wider window of context; in the case of TnT, each

tag is directly affected by the surrounding two items on each side, as opposed to just

the word on the left and the word on the right, as with majority rules. Thirdly, by

using lexical probabilities, TnT accounts for the more general patterns of tags for a

given word. Majority rules only knows that within a particular context, tag A occurs

more often than tag B; an HMM tagger is able to further figure out which of tag A

or tag B is more popular overall for the focus word.

But most classifiers are not attuned to the fact that these positions are special—

as majority rules is—and that annotators disagreed about how to annotate them.

Furthermore, as we saw with TiMBL, sometimes the probabilities of items further

away from the focus word actually hurt the probability of the correct tag. That is,

the tagger can use too much context, giving too much credence to context which is

irrelevant for the current tag. For example, the choice between a past tense verb

and a past participle is dependent upon the preceding words, and the probabilities

following the verb may sway the tagger to select the wrong tag. Majority rules based

on non-fringe trigrams is only influenced by the immediately-surrounding context.
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Taking these complementary properties into account, we turn to using other clas-

sifiers in conjunction with majority rules. If both a classifier and the majority tag

agree, then we have two different, somewhat complementary sources of evidence for

the assigned tag, and so we should feel more confident about using that label. This is

essentially the same thing as using a voting system of taggers to identify which tags

to keep (cf. van Halteren et al., 2001), except that one of our “taggers” is the simple

majority rules method.

Turning to the results, as shown in figures 6.16 and 6.17, we get upwards of 90%

precision for the class of labels which are the majority and which were also selected

by the tagger, for both the altered and unaltered TnT models.

Changed Unchanged Total
Same as majority 84.85% (28/33) 89.86% (133/148) 88.95% (161/181)
Different from majority 62.79% (27/43) 81.25% (13/16) 67.80% (40/59)
No majority 60.0% (21/35) 76.0% (19/25) 66.67% (40/60)

Figure 6.16: TnT results, based on whether the tag agrees with the majority tag

Changed Unchanged Total
Same as majority 97.06% (33/34) 89.51% (145/162) 90.82% (178/196)
Different from majority 85.19% (23/27) 88.24% (15/17) 86.36% (38/44)
No majority 74.07% (20/27) 72.73% (24/33) 73.33% (44/60)

Figure 6.17: TnT results with complex ambiguity tags, based on whether the tag
agrees with the majority tag
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1. Tagger agrees with the majority tag.

2. Tagger disagrees with the majority tag.

3. There is no majority tag.

Figure 6.18: Ranking of the reliability of tags

The number of elements which fall into the set obtained by taking the union of the

majority and tagger cases are almost two-thirds of the whole set: 181 out of 300 in

the original TnT case and 196 out of 300 in the case of TnT with complex ambiguity

tags. The ratio for changed tags is slightly lower: 33 out of 111 (regular TnT) and 34

out of 88 (complex TnT), indicating that these changed areas are less obvious cases

to tag for either method.

We can observe that the worst results are not found where the majority label

is different from the classifier, but where there is no majority label available. This

should not be too surprising, given that no majority usually means that there is not

much data, causing the taggers to be less reliable. With these results, we can establish

a hierarchy for how trustworthy a tag. This is presented in figure 6.18.

As mentioned, what we are doing is basically voting, but by focusing on whether

the original tags were changed or not, we are actually voting with three pieces of ev-

idence: 1) tagger information, 2) majority label, and 3) original corpus data. Unlike

a straightforward voting algorithm, however, it is not clear how to score the original

data. It should not always receive a positive vote; we see that in the complex am-

biguity case where the tagger and majority labels agree, they are more often correct

when they have changed the data, and thus are voting against the original data.

216



Viewing this as a three-way voting task might be useful, though: note that when

the tagger and the corpus agree, but the majority label does not (the unchanged

category of the different rows), we find a fairly high percentage. Thus, two pieces of

evidence outweigh the other. But we do not always find higher percentages when two

of the three pieces of data agree. The changed category of the different rows shows

that when the tagger disagrees with both the corpus and the majority, the tagger is

still more often correct.

Thus, we see that the most reliable piece of information is the tagger, followed by

the majority label, and finally by the corpus label (we are, after all, trying to correct

spots we have deemed likely in need of correction). With this in mind, we can move

towards a more fine-grained ranking of the reliability of the information we have. We

give such a ranking in figure 6.19, where 1 is the most reliable source of information

(T = tagger, C = corpus, M = majority). If we are only looking at the changed tags,

this can be simplified to figure 6.18.

1. Tagger has changed the data and agrees with the majority tag (TM).

2. Tagger has not changed the data and agrees with the majority tag (TCM).

3. Tagger has not changed the data and disagrees with the majority tag (TC).

4. Tagger has changed the data and disagrees with the majority tag (T).

5. There is no majority tag.

Figure 6.19: Ranking of the reliability of tags (positive votes in parentheses)
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6.4 Finer-grained distinctions

Although the large groupings provided by the majority tag information represent

a significant gain in terms of being able to prioritize our ability to automatically

correct, we are still in pursuit of corpus positions which can be corrected with 100%

accuracy. We have fairly broad groupings, but perhaps if we can rank the spots even

further, we can identify a point above which automatic correction is allowable.

To that end, we establish numerical scores for each corpus position, scores which

loosely correspond to how confident we can be in changing the tag at that position.

We selected two main schemes for ranking corpus positions: 1) using the percentage

of time in the variation trigram where the majority tag was used in the original corpus

(what we will call proportion), and 2) using the amount of variance in a variation

(what we will call variance). Other schemes could be used, but these seem to capture

the relevant properties.

6.4.1 The methods of ranking

The idea of using the proportion of a tag is rather simple: we take all the tags for

the nucleus of a trigram variation and find the percentage of tags which correspond

to the majority. That is, we find how much of a majority it is. For example, in

the American depositary, American is once annotated NNP (proper noun) and twice

annotated JJ (adjective). The proportion score is 2/3, or 0.67 (i.e., 67%). The formula

is given in (73), where tmaj is the majority tag, ti is a tag in the variation, and C(X)

is a frequency count.

(73)
C(tmaj)
∑

i

C(ti)
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What we have loosely called variance, on the other hand, represents how skewed,

or varied, the distribution of tags is in a trigram. We sum the squares of differences

between the frequency of each tag and the mean, and then we average this “skew

value” (Kaljurand, 2004) by dividing by the number of tags which are in variation.

The formula is given in (74), where ti is a tag in the variation, t̄ is the mean of the

tags in the variation, and |T | is the total number of tags in the variation.

(74)

∑

i

(C(ti)−t̄)2

|T |

For example, with the trigram the American depositary, the mean of the variations

is 1.5 (=(1+2)/2)). The sum of the squares of the differences is: (1−1.5)2+(2−1.5)2 =

(−0.5)2 + 0.52 = 0.5. Dividing this by two (the number of unique tags) results in a

score of 0.25.

There are significant differences in the aims and outcomes of these two other

methods. The proportion method normalizes the data to some extent. For instance,

if the majority tag outranks the other tag 3 out of 4 times, this is the same thing as

being the selected tag 30 out of 40 times. In both cases, the proportion score is 0.75.

Because the variance measure, however, takes into account absolute counts in

its calculations, the same proportions with higher frequency counts will have higher

variance values. For example, the variance of the 3 out of 4 case is 1. For the case of

30 out of 40, the variance is 100. The scores here are considerably different, whereas

they were equal with the proportion method. Note that when there is no majority

tag, neither score is informative; the proportion will always be 50% (if there are only

two tags) and the variance will be zero.100

100When there are three tags with the same counts, the variance is still zero, matching the situation
of two tags with the same counts. The proportion score, however, drops to 0.33, and so is more
swayed by the number of tags.
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The question we want to answer is: which score is the better indicator that some-

thing needs to be changed? We are using these scores to rank the output of a tagger,

and we want to see which corpus positions are most in need of change. Note, then,

that which score works best might differ depending on which group of tags we are

looking at. For instance, the proportion score—derived from the majority—might be

best when the tagger agrees with the majority tag, but maybe less so when it does

not.

In some ways the proportion score seems to be a better indicator of how reliable

a change is: tags which are changed and are a high majority intuitively should be

changed. But in other ways it seems that the variance might be a better indicator of

trustworthiness of a tag. The variance score says that outscoring another tag by 20

occurrences is much stronger evidence for the majority tag than outscoring another

tag by 2.

6.4.2 Results of ranking

We will compare these two methods of ranking in two different ways, emphasizing

different properties of the results. The first way is to automatically group scores into

tiers and see how many of each tier are correct or incorrect. This tier-based evaluation

will show in broad terms how effective the more fine-grained rankings are. The second

way of evaluation is to find the rank of the first incorrect example. This will show

how many examples can be automatically corrected before manual correction should

begin.
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Tier-based evaluation

Using tiers of scores to evaluate the proportion and variance rankings is useful to

see how well the rankings distribute the correct and incorrect tags. This method of

evaluation places a priority on sorting good tags from bad tags but without neces-

sarily demanding 100% correction (which will be useful when discussing token error

detection in section 6.5).

Tier-based evaluation for proportion ranking We first look at how the pro-

portion score does in ranking the output of the majority rules correction method

(excluding cases of no majority), as shown in figure 6.20.

All (240) Changed (51)
Tier Precision Precision
0.4 100% (2/2) 100% (2/2)
0.5 70.83% (17/24) 71.43% (5/7)
0.6 71.01% (49/69) 76.47% (13/17)
0.7 83.64% (46/55) 84.62% (11/13)
0.8 95.23% (40/42) 88.89% (8/9)
0.9 95.83% (46/48) 100% (3/3)

Figure 6.20: The accuracy of different tiers for majority rules using the proportion
ranking

We obtain the tiers by truncating all decimal values to the tenth decimal place

and taking all those values together; for example, 0.56, 0.53, and 0.5 all go into the 0.5

tier. Aside from the small number of examples in the 0.4 tier, we see a steady upward

trend for all positions and for the changed positions. We move from a precision of
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70% in the 0.5 bracket to precisions in the 90% range in the 0.9 bracket. Even without

using a more sophisticated classification technique, we see that we can obtain high

precision within the higher tiers for majority rules correction. In other words, when

restricted to strong majorities (0.7 and above), majority rules correction is better

than we first thought (as in figure 6.15).

The same upwards trends are observed using the proportion ranking on the output

of the regular TnT correction method and the method using TnT with complex

ambiguity classes. These results are shown in figures 6.21 and 6.22, respectively.

Although we do not show the results here, the same trends (with higher numbers)

are observed when isolating those spots where the tagger agrees with the majority.

All (300) Changed (111)
Tier Precision Precision
0.4 100% (2/2) n/a
0.5 61.18% (52/85) 53.33% (24/45)
0.6 81.16% (56/69) 78.13% (25/32)
0.7 83.64% (46/55) 72.22% (13/18)
0.8 88.10% (37/42) 81.82% (9/11)
0.9 100% (48/48) 100% (5/5)

Figure 6.21: The accuracy of different tiers for TnT using the proportion ranking
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All (300) Changed (88)
Tier Precision Precision
0.4 100% n/a
0.5 75% (63/84) 76.47% (26/34)
0.6 91.30% (63/69) 96% (24/25)
0.7 87.27% (48/55) 88.24% (15/17)
0.8 90.48% (38/42) 88.89% (8/9)
0.9 95.83% (46/48) 100% (3/3)

Figure 6.22: The accuracy of different tiers for TnT with complex ambiguity tags
using the proportion ranking

Here we see a much more drastic leap from the 0.5 tier to the 0.6 tier, indicating

that proportion ranking is even more useful for sorting classifier output. This makes

sense: for majority rules, the proportion ranking is simply a more fine-grained anal-

ysis of the same (majority) information. For classifiers, this is truly a new piece of

information, indicating where the evidence is weak or strong.101

Tier-based evaluation for variance ranking We want to compare the propor-

tion rankings to the variance rankings, but there is no exact one-to-one comparison.

The variance rankings have different values and thus form different tiers. We can,

however, observe if the general trends are the same or not. We assigned the tiers as

follows: after truncating the decimal point, we put the values into groups which were

basically logarithmic, ending up with classes of: 0, 1-100, 101-1000, and greater than

1000.

101One could also use the ranked output of TnT and group the tags by the probabilities TnT
assigned. We expect similar results (and preliminary results indicate as much), but do not try that
here, given that not all classification output has the option of probabilistic rankings of choices.
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Again, we first looked at the majority rules method of correction, and here we see

both an advantage and a disadvantage of the variance ranking over the proportion

ranking. For the top two tiers, we obtain 100% precision. At a high enough level of

variance, we can be confident in majority rules without using a classifier. The reason

this is true is that the variance ranking takes into account not only how strong a

majority is (the relative difference between the frequencies of two tags), but also that

there is a wide absolute difference between the most popular tag and the next most

popular tag. But this is true for a small number of examples—only for 12 out of

51 samples, in the case of the changed positions. The precision is much worse for a

greater number of samples (the 0 and 1-100 tiers) than with the proportion ranking.

All (240) Changed (51)
Tier Precision Precision
0 74.22% (95/128) 72.41% (21/29)
1-100 79.55% (35/44) 70% (7/10)
101-1000 100% (38/38) 100% (9/9)
1001+ 100% (20/20) 100% (3/3)

Figure 6.23: The accuracy of different tiers for majority rules using the variance
ranking

Turning to the TnT output, in figures 6.24 and 6.25, we see the same general

upwards trend in precision as was observed for the proportion method in figures 6.21

and 6.22. And, as with the majority rules method, we see very high accuracies in the

upper two tiers. But again a downside to the variance measure is the sheer number

of examples which are grouped into the lowest tier. A full 63% (188/300) of cases are
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in the lowest tier, while only 28% (85/300 and 84/300) of the cases for the proportion

method are in the lowest (0.5) tier.102 And with the proportion method, we see a

sharp rise between the 0.5 bracket and the 0.6, from roughly 60% to 80% in the case

of the regular TnT method and from 75% to 90% in the case of the TnT method

with complex ambiguity classes. Thus, the proportion method does a better job of

distributing the corpus positions.

All (300) Changed (111)
Tier Precision Precision
0 72.34% (136/188) 62.79% (54/86)
1-100 88.89% (48/54) 85.71% (12/14)
101-1000 97.37% (37/38) 87.5% (7/8)
1001+ 100% (20/20) 100% (3/3)

Figure 6.24: The accuracy of different tiers for TnT using the variance ranking

All (300) Changed (88)
Tier Precision Precision
0 82.98% (156/188) 83.58% (56/67)
1-100 85.19% (46/54) 88.89% (8/9)
101-1000 100% (38/38) 100% (9/9)
1001+ 100% (20/20) 100% (3/3)

Figure 6.25: The accuracy of different tiers for TnT with complex ambiguity tags
using the variance ranking

102Technically, 0.4 is the lowest tier, but since there are so few cases there, it would probably be
best to simply group them with the 0.5 group.
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Winner Group Method First for All First for Changed

Variance All Proportion 31 (240) 6 (51)
Variance 63 (240) 13 (51)

Figure 6.26: The ranking of the first item which is a wrong tag assignment by majority
rules

Ranking evaluation

In order to place a priority on doing as much automatic correction as possible, we

count how many examples can be automatically corrected before a miscorrection is

encountered. This is simply another way to look at the same results and was alluded

to when we mentioned how the variance method gives 100% precision in the higher

tiers. We are testing how many examples it takes before the precision is no longer

100%.

We present the results here, for the majority rules method in figure 6.26 and

for the TnT methods in figures 6.27 and 6.28. Since we want as many examples as

possible to be correct before the first incorrect answer is encountered, higher values

are preferable.

In general, we see variance as the better method, but it is important to note where

this happens. First of all, with the majority rules method of correction by itself, it

works better than the proportion ranking. And for the regular TnT and the TnT

with complex ambiguity tags methods, it works better when the tagger agrees with

the majority. This is likely because variance gives information not already present in

the majority label.
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Winner Group Method First for All First for Changed

Proportion All Proportion 58 (300) 6 (111)
Variance 23 (300) 4 (111)

Variance Agrees w/ maj. Proportion 64 (181) 5 (33)
Variance 79 (181) 14 (33)

Proportion Disagrees w/ maj. Proportion 5 (59) 4 (43)
Variance 1 (59) 1 (43)

Figure 6.27: The ranking of the first item which is a wrong tag assignment by TnT

Winner Group Method First for All First for Changed

Variance All Proportion 31 (300) 4 (88)
Variance 67 (300) 19 (88)

Variance Agrees w/ maj. Proportion 31 (196) 16 (34)
Variance 64 (196) 16 (34)

Variance Disagrees w/ maj. Proportion 3 (44) 2 (27)
Variance 7 (44) 4 (27)

Figure 6.28: The ranking of the first item which is a wrong tag assignment by TnT
with complex ambiguity tags

The regular TnT results, as given in figure 6.27, again highlight the advantage

gained when prioritizing positions where the tagger agrees with the majority. For the

variance ranking, we find that the twenty-third value of all 300 is wrong, but when

we narrow it down to the 181 positions where the tagger agrees with the majority

we find that it is not until the seventy-ninth value that we find an incorrect tag, a

huge improvement. Recall that the variance ranking has high values for high absolute

differences; this generally means that TnT has plenty of data to make a decision, and

so it makes an informed decision.
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The variance method clearly has its strengths, but because the proportion method

does well for the regular TnT method, we cannot clearly say which ranking system is

better. It is clear, however, from this section and the previous one that using some

ranking system (or combination thereof) is beneficial for dealing with the most likely

corrections first. Indeed, with the variance method where the tagger agrees with the

majority, we find 30-40% of the cases which are correct before an incorrect case is

encountered. Being able to automatically correct 30% of the errors would represent

a huge gain in efficiency in corpus correction.

6.5 Token error detection

We have shown in the previous section that in the case of POS annotation of the

WSJ corpus, we can designate a set of errors which can be automatically corrected.

This is a significant achievement, but we have not shown the method to be generally

applicable, and so it does not guarantee accurate corrections for every corpus. To err

on the side of safety, thus, we propose taking the automatic correction results and

using them for token error detection.

Because the variation n-gram method detects error types, part of the task we

have to deal with in correction is not only to correct tags, but to figure out which

tag tokens to correct. With the variation n-gram error detection method, a type is

identified as an error, but which tokens are errors is left undecided. For correction,

we have to identify tokens which are wrong; the task of token error detection has thus

far been integrated into the error correction stage.
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If we look back over the results in this chapter and the previous one, we can

see that the methods we have devised for correction are highly effective for the task

of token error detection. For the WSJ corpus, we have obtained high percentages

of correction, which means that: a) an error was successfully detected, and b) the

suggested replacement tag was correct. In other words, using these correction methods

as token error detection methods is actually better than simple token error detection;

it is error detection with a fairly accurate guess for the correct label.

For example, we reported in section 5.4 that TnT with complex ambiguity tags

obtains 86.36% precision on changed positions, corresponding to 4640 successful cor-

rections out of 5373 changes. If we examine only the 5373 changes, then we have a

token error detection rate of approximately 86.36%. Compare the reported accuracy

of 20.5% in van Halteren (2000) for the similar task of comparing the benchmark to

a tagger without having identified areas of inconsistency first.

Furthermore, for those detected instances, we have an accurate assignment of a

correct tag. So, even if one were to correct these 5373 spots by hand in order to

guarantee 100% error correction, one would not have to sort through much in the

way of false corrections. Similar to Brants and Skut (1998) and Brants and Plaehn

(2000), we can enhance annotation efforts by giving annotators a choice of two tags,

the original tag and the suggested correction. Brants and Plaehn (2000) shown that

this method of annotation speeds up the annotation process, and so going through

5373 examples by hand is very feasible.

The error correction results for the BNC-sampler were less good than those for the

WSJ in terms of precision, but positive in terms of token error detection. Although

we did not repair the tag appropriately in a majority of cases, we did succeed in
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grouping the token occurrences into two groups: those more likely to need repair and

those less likely to need it. This is consistent with the results from the experiments

on the WSJ.

The way to sort groups most effectively is to maximize the precision of the un-

changed tokens—the closer we are to putting 100% of the tokens into the unchanged

group, the more we have appropriately sorted the tokens into the right classes. For

example, as shown in figure 6.29 (taken from figure 5.2) for the decision tree tagger,

we obtained a precision of 90.15% on the unchanged positions.

Changed Unchanged Total
Default 73.83% (79/107) 90.15% (174/193) 84.33% (253/300)

Figure 6.29: Results of running the Decision Tree Tagger on the 300 samples

This means that the tagger did a good job of changing tags only when necessary,

and so nearly every tag that it should have changed is in the changed portion of the

sample. If we obtain 100% on the unchanged positions, we know that we have 100%

recall within the changed positions.

6.6 Summary for automatic sorting

Building on the work of automatically correcting a corpus and using information

present in the variation n-grams, in this chapter we have identified several different

methods for sorting the output of an error correction method, based on how reliable

the output is. We sorted the output in a few different ways.
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First, we automatically identified problematic tagset distinctions, and we did this

by using information found in the variation unigrams and trigrams. The effect of this

was shown in an improvement in correction after removing the most problematic tag.

We then turned to sorting methods which relied on using the majority label in-

formation from a word’s variation trigram. Using the majority and the distribution

of tags in a trigram, we were able to further sub-rank the correction output, thereby

prioritizing corpus positions for correction. In fact, we were able to identify a set of

errors which can be automatically corrected. This is significant, in that automatically

detecting and correcting errors has never been done before in the same process—i.e.,

people have found ways to automatically detect errors (see section 1.3.3) or have writ-

ten rules to correct erroneous patterns (e.g., Oliva, 2001), but never has the whole

process been automated from start to finish, for even a subset of the data.

Finally, we discussed how automatic correction methods could be re-interpreted

as token error detection methods. In addition to merely identifying the incorrect tag

for a corpus position, though, these methods provide a suggested tag, which allows

one to quickly detect and correct errors in a corpus.

The general correction procedures we have described for POS annotation can in

principle be applied to our syntactic error detection work. Since we also have variation

n-grams for syntactic annotation, it is clear how to derive a majority, but as for

adapting classification techniques, we do not have a strict classification for each corpus

position since the annotation is non-positional. Thus, we cannot simply expand the

correction methods from this and the previous chapter to syntactic annotation.
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To sketch this out a bit more, however: instead of using simple classifiers, one can

use a PCFG induced from a treebank to assign structure to the same treebank—i.e.,

train and evaluate on the same corpus. From the resulting corpus, one can extract

the relevant category (or nil) labels for a given string, to see if the analysis agrees

with benchmark or not and what it suggests instead. Given that parsers are generally

less accurate than taggers, it is not clear whether this methodology will be effective

or not, and it will require non-trivial extensions to deal with the nil tags.
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CHAPTER 7

Summary and Outlook

In this thesis we have outlined an error detection and correction process for anno-

tated corpora. After showing the need for error detection and correction in annotated

corpora (chapter 1), we addressed that need by defining/developing and demonstrat-

ing the effectiveness of the variation n-gram method for finding errors in a range of

increasingly complex annotation types (chapters 2, 3, and 4). We then showed that

the output of the variation n-gram method can be combined with classification tech-

niques in order to provide semi-automatic correction of annotation errors (chapters 5

and 6).

This is the first time that an automatic error detection method—independent of

corpus, language, or annotation scheme—has been explored so thoroughly and for

such a range of annotation types. To the best of our knowledge, this also is the first

time that anyone has demonstrated how to add semi-automatic correction on top of

automatic detection of annotation errors.

Despite the success of the method so far, future work can and needs to examine

and extend the variation n-gram method for detecting annotation errors to a) make

it applicable for a wider range of annotation types, b) increase recall of the method

through the refinement of what constitutes comparable contexts and by a combination
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with other error detection methods, c) improve and extend the error correction stage

for more annotation types, and d) research and evaluate the effect of annotation errors

and their correction on the use of corpus annotation for human language technology

and on theoretical linguistics.

7.1 Error detection for more annotation types

We have seen that the method for detecting variation n-grams is applicable as

long as it is possible to establish a one-to-one mapping between recurring stretches

of data and the annotation for which variation is to be detected. Future work can

examine the conceptual and technical issues involved in applying variation detection

to a broad range of different types of annotation, focusing on two main groups of

linguistic annotation—semantic/pragmatic, and bi-texts (as used for statistical ma-

chine translation)—as well as detecting errors in the insertion of material such as null

elements into a corpus.

For semantic and pragmatic annotation, one can focus on lexical semantic, coref-

erence, and Rhetorical Structure Theory annotation. PropBank (Kingsbury et al.,

2002) is a good place to start, given the correspondence of the semantic propositions

in PropBank to the syntactic annotation in the Penn Treebank. We envisage that

the variation nucleus approach developed in chapter 4 for discontinuous syntactic an-

notation will be applicable for multi-word expressions (Rayson et al., 2004), so that

the central focus of this work will be on establishing a relevant notion of context to

disambiguate between ambiguity and error. Semantic and pragmatic distinctions are
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not necessarily dependent on the immediately surrounding words, in the way that

part-of-speech and syntactic distinctions are, so a more elaborate notion of context

is needed.

As a brief sketch of how to redefine the context, we start with the fact that our

work thus far required identical words for nuclei and contexts. One can redefine

the notion of similarity for both nuclei and contexts using techniques from machine

learning methods such as memory-based learning (MBL) (Daelemans et al., 1996,

1999). As we discussed in chapter 5, MBL is a form of k-nn (k nearest neighbor)

classifying, where the case to be labeled is matched with the most similar case(s)

in memory. One can use different semantic-specific features to define the similarity

metric, which will indicate when two items are the same.

In the future, we envisage exploring the consistency of translations in aligned bi-

texts, corpora which contain two languages where translation pairs have been iden-

tified. Correspondences can be identified on a word or on a phrase level, and the

approach we developed for the syntactic annotation of discontinuous constituency

is likely to be of use in the bi-text context to detect inconsistencies in the bi-text

alignment.

Finally, we saw in section 3.2.1 how null elements had been inserted into a treebank

for theoretical reasons and in section 4.5.2 how inserted punctuation in a spoken

corpus had an effect on the method. One question we did not address at the time

was how to tell if the inserted material had been consistently inserted into the corpus.

That is, were the same insertion decisions made in the same context? In principle,

the variation n-grams method can address such a question. We sketch here one way

to adapt the method for finding inconsistencies in inserted material. One can first
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strip the corpus of all inserted material and then define a variation nucleus as being

of length two. For each nucleus, one can then go back to the original corpus and see

if an element had been inserted between the two nucleus tokens. If so, the nucleus

receives that inserted item as its label; otherwise, it receives the label nil. In such a

way, one can find out if corpus annotators consistently inserted material.

7.2 Increased recall

We saw that the variation n-gram method is relatively precise in detecting errors

and that it detects a significant number of errors. However, it is extremely unlikely

that we have detected all the errors in a corpus, simply because our method relies on

repeated text, and not every string with erroneous annotation appears multiple times.

Thus, it should be possible to increase the recall of errors by further generalizing the

notion of a recurring variation nucleus or the notion of comparable contexts within

the variation n-gram method and by developing other error detection methods.

In chapters 3 and 4, we defined contexts for syntactic annotation in terms of part-

of-speech tags—instead of words—and we saw that it greatly increased the recall.

There is a tradeoff between precision and recall that needs to be more fully explored,

but future work can continue this line of research by basing the contexts on any of

the levels of annotation in a corpus, or abstractions thereof. Thus, for a wide range

of annotations, one can increase recall, i.e., the number of errors detected. Other

context generalizations also seem to be available if one is willing to include language

or corpus specific information in computing the contexts. In the WSJ corpus, for

example, different numerical amounts, which frequently appear in the same context,

could be treated identically.
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Future work can also delve into increasing recall by developing other error detec-

tion methods, some of which we have mentioned in this thesis. For part-of-speech

annotation, we used closed class analysis and implementation of tagging guideline

rules (see section 2.4) to find more errors, but did not fully evaluate these methods.

Both of these techniques can be developed further and can be applied to annotations

other than part-of-speech in one way or another, thereby increasing the number of

errors found. And in section 3.3, we developed a context-independent method for

detecting errors in treebanks based on the notion that grammar rules in a treebank

should be applied consistently. As this method demonstrates, by revisiting the notion

of a variation nucleus, one can continue to seek out other kinds of inconsistencies to

increase recall.

7.3 Extending error correction

In this thesis, we demonstrated the usefulness of error correction for POS annota-

tion, based on the output of the variation n-gram method. There are several directions

in which to take these results: future work can go into making the methods more ro-

bust, extending the methods to the general process of part-of-speech tagging, and

extending them to other annotation types.

We showed how useful our methods of automatic correction were for the WSJ

corpus, but they were not as effective for the BNC-sampler. In an effort to make

error correction more applicable to a wide range of POS-annotated corpora with

different kinds of annotation schemes, future work can place a priority on developing

a taxonomy of the errors provided by the error detection phase, akin to the work in

Blaheta (2002). Different kinds of errors require different kinds of correction: some
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can be corrected irrespective of the surrounding words, while others are dependent on

the context, and still others may need human intervention (cf. Oliva, 2001). As we

demonstrated in chapter 6, we have made some progress into automatically classifying

the errors into an appropriate category, but it remains a high priority to more precisely

categorize the errors.

The error correction work we have described can also be extended to the general

task of part-of-speech tagging. We saw in chapter 5 that one way to correct inconsis-

tencies was to train the classifier on ambiguity classes that caused the inconsistencies.

These inconsistencies stem from ambiguities in the data, which is what makes clas-

sification difficult in the first place, and thus there is reason to believe that a tagger

trained on complex ambiguity classes can be a useful part-of-speech tagger, provided

that we can sufficiently establish the appropriate ambiguity classes for each word.

Future work will determine to what extent the method works.

Finally, we want to be able to semi-automatically correct different layers of anno-

tation, just as we detected errors in different kinds of annotation. Although classifiers

are not generally used for assigning syntactic structure to a sentence (since the anno-

tation is non-positional), some of the general correction procedures we have described

can in principle also be applied to syntactic error correction work. Following with

the idea that a piece of NLP technology can be used to enforce consistent behavior,

one can use a PCFG induced from a treebank to assign structure to that same tree-

bank and again focus on spots flagged by the variation n-gram method. Corrections,

however, can percolate up the tree, and so one has to carefully determine where to

stop correcting. Likewise, as different errors can potentially interact within a given

sentence, one has to work out a way to use information from the majority label in
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an n-gram—which we showed to be successful for POS error correction. Because nil

strings mean that there are different bracketings, a string of one size may have a

majority bracketing which conflicts with the majority bracketing of the string when

it is expanded further. Work will have to go into resolving such conflicts.

7.4 Consequences of better corpus annotation

Although we have done some testing on the effect of different types of annotation

errors (e.g., the work on removing erroneous grammar rules in section 3.3.4), in the

future one can further the work of determining the impact of errors and their correc-

tion on the use of corpus annotation in human language technology. Our experiment

with LoPar (section 3.3.4) suffered from the fact that the testing data had not been

cleaned. Thus, by automatically cleaning (and hand-checking) a part of a corpus used

for evaluation, one can determine the differences between the originally reported error

rate of some technology and its error rate on the cleaned testing data.

Turning to the training data, we have only tried seeing the effects of erroneous

training data with syntactic annotation, but we have gone to great lengths to correct

POS annotation. Future work will further test the impact of errors on training data

by performing the tenfold cross-validation experiment of van Halteren (2000) with

automatically corrected POS training data (manually-checked) against the original

data. We know from our experiments that the automatically corrected portions of the

WSJ are significantly better than the original data, and we also can determine which

distinctions were difficult to maintain over the corpus. Thus, one can be sure of first

improving the training data in a semi-automatic way; then training a technology on

that data; and finally testing on the cleaned evaluation set, as mentioned above.
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One final note is in order about better corpus annotation. The process of error

detection has shown us that corpus annotation can only be as good as the annotation

scheme allows. Future work can further explore what kinds of corpus distinctions are

difficult to make and if they tell us anything about interesting linguistic phenomena.
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Johansson, Stig (1986). The Tagged LOB Corpus: Users’ Man-

ual . Norwegian Computing Centre for the Humanities, Bergen.
http://helmer.aksis.uib.no/icame/lobman/lob-cont.html.

249

ftp://ftp.dcs.shef.ac.uk/home/hepple/papers/coling94.ps
http://acl.ldc.upenn.edu/C/C00/C00-1046.pdf
http://helmer.aksis.uib.no/icame/lobman/lob-cont.html


Johnson, Mark (1985). Parsing with discontinuous constituents. In Proceedings of the
23rd Annual Meeting of the Association for Computational Linguistics (ACL-85).

pp. 127–132. http://acl.ldc.upenn.edu/P/P85/P85-1015.pdf.

Kaljurand, Kaarel (2004). Checking treebank consistency to find annotation errors.
http://math.ut.ee/˜kaarel/NLP/Programs/Treebank/ConsistencyChecking/.

Kasper, Robert T., Mike Calcagno and Paul C. Davis (1998). Know

When to Hold ’Em: Shuffling Deterministically in a Parser for Noncon-
catenative Grammars. In Proceedings of the Thirty-Sixth Annual Meet-

ing of the Association for Computational Linguistics (ACL-98). pp. 663–669.
http://acl.ldc.upenn.edu/P/P98/P98-1109.pdf.

Kathol, Andreas (1995). Linearization-Based German Syntax. Ph.D. thesis, Ohio
State University. Revised version published by Oxford University Press, 2000.

Kilgarriff, A. (1998). Gold standard datasets for evaluating word sense

disambiguation programs. In Computer Speech and Language, vol. 12.
ftp://ftp.itri.bton.ac.uk/reports/ITRI-98-08.ps.

Kingsbury, Paul, Martha Palmer and Mitch Marcus (2002). Adding Se-

mantic Annotation to the Penn Treebank. In Proceedings of the Hu-
man Language Technology Conference (HLT 2002). San Diego, California.

http://www.cis.upenn.edu/˜ace/HLT2002-propbank.pdf.

Klein, Dan and Christopher D. Manning (2001). Parsing with Treebank Grammars:
Empirical Bounds, Theoretical Models, and the Structure of the Penn Treebank. In

Proceedings of the 39th Annual Meeting of the Association for Computational Lin-

guistics (ACL-01). pp. 330–337. http://acl.ldc.upenn.edu/P/P01/P01-1044.pdf.

König, Esther, Wolfgang Lezius and Holger Voormann (2003). TIGERSearch User’s
Manual . IMS, University of Stuttgart. http://www.tigersearch.de.

Kordoni, Valia (2003). Strategies for annotation of large corpora of multilingual

spontaneous speech data. In Proceedings of the Workshop on Multilingual Cor-
pora: Linguistic Requirements and Technical Perspectives. Lancaster, pp. 53–57.

http://www.coli.uni-sb.de/muco03/Proceedings.htm.

Kroch, Anthony S. and Aravind K. Joshi (1987). Analyzing Extraposition in a Tree
Adjoining Grammar. In Huck and Ojeda (1987), pp. 107–149.

250

http://acl.ldc.upenn.edu/P/P85/P85-1015.pdf
http://math.ut.ee/~kaarel/NLP/Programs/Treebank/ConsistencyChecking/
http://acl.ldc.upenn.edu/P/P98/P98-1109.pdf
ftp://ftp.itri.bton.ac.uk/reports/ITRI-98-08.ps
http://www.cis.upenn.edu/~ace/HLT2002-propbank.pdf
http://acl.ldc.upenn.edu/P/P01/P01-1044.pdf
http://www.tigersearch.de
http://www.coli.uni-sb.de/muco03/Proceedings.htm


Krotov, Alexander, Mark Hepple, Robert J. Gaizauskas and Yorick Wilks (1998).
Compacting the Penn Treebank Grammar. In Proceedings of the 17th Interna-

tional Conference on Computational Linguistics (COLING) and the 36th Annual
meeting of the Association for Computational Linguistics (ACL). pp. 699–703.

http://acl.ldc.upenn.edu/P/P98/P98-1115.pdf.
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Lönneker, Birte and Primož Jakopin (2004). Checking POSBeseda, a Part-of-Speech
tagged Slovenian corpus. In Proceedings of the Fourth Language Technologies Con-

ference of the Slovenian Language Technologies Society . Ljubljana, Slovenia, pp.
48–55. http://nl.ijs.si/isjt04/zbornik/sdjt04-09lonneker.pdf.

Ma, Qing, Bao-Liang Lu, Masaki Murata, Michnori Ichikawa and Hi-

toshi Isahara (2001). On-line Error Detection of Annotated Corpus
Using Modular Neural Networks. In International Conference on Ar-

tificial Neural Networks (ICANN2001). Vienna, Austria, pp. 1185–1192.
http://www.math.ryukoku.ac.jp/˜qma/papers/ICANN2001 err detec.ps.gz.

Magerman, David (1995). Statistical Decision-Tree Models for Parsing. In Proceedings

of the 33rd Annual Meeting of the Association for Computational Linguistics (ACL-

95). pp. 276–283. http://acl.ldc.upenn.edu/P/P95/P95-1037.pdf.

Manning, Christopher D. and Hinrich Schütze (1999). Foundations of Statistical
Natural Language Processing . Cambridge, MA: The MIT Press.

Marcus, M., Beatrice Santorini and M. A. Marcinkiewicz (1993). Building a large an-

notated corpus of English: The Penn Treebank. Computational Linguistics 19(2),
313–330. http://acl.ldc.upenn.edu/J/J93/J93-2004.pdf.

Marcus, Mitchell, Beatrice Santorini, Mary Ann Marcinkiewicz and Ann Tay-

lor (1999). Treebank-3 Corpus. Linguistic Data Consortium. Philadelphia.
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC99T42.

Marquez, Lluis and Lluis Padro (1997). A Flexible POS Tagger Using an Auto-

matically Acquired Language Model. In Proceedings of the 35th Annual Meet-

ing of the Association for Computational Linguistics. Madrid, Spain, pp. 238–245.
http://acl.ldc.upenn.edu/P/P97/P97-1031.pdf.

McCawley, James D. (1982). Parentheticals and discontinuous constituent structure.

Linguistic Inquiry 13(1), 91–106.

Meurers, Walt Detmar (2005). On the use of electronic corpora for theoretical lin-
guistics. Case studies from the syntax of German. Lingua 115(1), 1619–1639.

http://ling.osu.edu/˜dm/papers/meurers-03.html.

Mitchell, Thomas M. (1997). Machine Learning . New York: McGraw-Hill Higher
Education.

252

http://nl.ijs.si/isjt04/zbornik/sdjt04-09lonneker.pdf
http://www.math.ryukoku.ac.jp/~qma/papers/ICANN2001_err_detec.ps.gz
http://acl.ldc.upenn.edu/P/P95/P95-1037.pdf
http://acl.ldc.upenn.edu/J/J93/J93-2004.pdf
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC99T42
http://acl.ldc.upenn.edu/P/P97/P97-1031.pdf
http://ling.osu.edu/~dm/papers/meurers-03.html


Mitkov, Ruslan, Constantin Orasan and Richard Evans (1997). The im-
portance of annotated corpora for NLP: the cases of anaphora resolution

and clause splitting. In Proceedings of the Workshop on Corpora and
NLP: Reflecting on Methodology at TALN’99 . Cargese, Corse, pp. 60 – 69.

http://clg.wlv.ac.uk/papers/mitkov-99b.pdf.

Morrill, Glynn V. (1995). Discontinuity in categorial grammar. Linguistics and
Philosophy 18, 175–219.

Müller, Frank H. and Tylman Ule (2002). Annotating topological fields and chunks

– and revising POS tags at the same time. In Proceedings of the 17th International
Conference on Computational Linguistics (COLING-02). Taipei, Taiwan, pp. 695–

701. http://acl.ldc.upenn.edu/C/C02/C02-1131.pdf.

Müller, Stefan (1999). Deutsche Syntax deklarativ. Head-Driven Phrase Structure

Grammar für das Deutsche. No. 394 in Linguistische Arbeiten. Tuebingen: Max
Niemeyer Verlag.

Müller, Stefan (2004). Continuous or Discontinuous Constituents? A Com-

parison between Syntactic Analyses for Constituent Order and Their Pro-
cessing Systems. Research on Language and Computation, Special Is-

sue on Linguistic Theory and Grammar Implementation 2(2), 209–257.
http://www.cl.uni-bremen.de/˜stefan/Pub/discont.html.

Nakagawa, Tetsuji and Yuji Matsumoto (2002). Detecting Errors in Corpora Us-

ing Support Vector Machines. In Proceedings of the 17th International Confer-
ence on Computational Lingusitics (COLING 2002). Taipei, Taiwan, pp. 709–715.

http://acl.ldc.upenn.edu/C/C02/C02-1101.pdf.

Nelson, Gerald, Sean Wallis and Bas Aarts (2002). Exploring Natural Language:

Working with the British Component of the International Corpus of English. Am-
sterdam: John Benjamins Publishing Company.

Oepen, Stephan, Dan Flickinger and Francis Bond (2004). Towards holistic gram-

mar engineering and testing—grafting treebank maintenance into the gram-
mar revision cycle. In Beyond Shallow Analyses—Formalisms and Statisti-

cal Modelling for Deep Analysis (Workshop at The First International Joint
Conference on Natural Language Processing (IJCNLP-04)). Hainan, China.

http://www-tsujii.is.s.u-tokyo.ac.jp/bsa/papers/oepen.pdf.

253

http://clg.wlv.ac.uk/papers/mitkov-99b.pdf
http://acl.ldc.upenn.edu/C/C02/C02-1131.pdf
http://www.cl.uni-bremen.de/~stefan/Pub/discont.html
http://acl.ldc.upenn.edu/C/C02/C02-1101.pdf
http://www-tsujii.is.s.u-tokyo.ac.jp/bsa/papers/oepen.pdf


Ojeda, Almerindo (1987). Discontinuity, multidominances and unbounded depen-
dency in Generalized Phrase Structure Grammar. In Huck and Ojeda (1987), pp.

257–282.

Oliva, Karel (2001). The Possibilities of Automatic Detection/Correction of Errors in
Tagged Corpora: a Pilot Study on a German Corpus. In Václav Matoušek, Pavel
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APPENDIX A

Annotation schemes

A.1 The Penn Treebank (Wall Street Journal)

A.1.1 POS annotation scheme

48 tags (36 word tags + 12 punctuation tags) (Santorini, 1990)
CC Coordinating conjunction TO to
CD Cardinal number UH Interjection
DT Determiner VB Verb, base form
EX Existential there VBD Verb, past tense
FW Foreign word VBG Verb, gerund or present participle
IN Preposition or subordinating conjunction VBN Verb, past participle
JJ Adjective VBP Verb, non-3rd person singular presen
JJR Adjective, comparative VBZ Verb, 3rd person singular present
JJS Adjective, superlative WDT Wh-determiner
LS List item marker WP Wh-pronoun
MD Modal WP$ Possessive wh-pronoun
NN Noun, singular or mass WRB Wh-adverb
NNS Noun, plural # Pound sign
NP Proper noun, singular $ Dollar sign
NPS Proper noun, plural . Sentence-final punctuation
PDT Predeterminer , Comma
POS Possessive ending : Colon, semi-colon
PP Personal pronoun ( Left bracket character
PP$ Possessive pronoun ) Right bracket character
RB Adverb ” Straight double quote
RBR Adverb, comparative ‘ Left open single quote
RBS Adverb, superlative “ Left open double quote
RP Particle ’ Right close single quote
SYM Symbol ” Right close double quote
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A.1.2 Syntactic annotation scheme

Clause-level tags 5 Clause-level tags (Bies et al., 1995)
S Simple declarative clause
SBAR Clause introduced by a (possibly empty) subordinating conjunction
SBARQ Direct question introduced by a wh-word or wh-phrase
SINV Inverted declarative sentence
SQ Inverted yes/no question, or main clause of a wh-question

Phrase-level tags 21 Phrase-level tags (Bies et al., 1995)
ADJP Adjective Phrase
ADVP Adverb Phrase
CONJP Conjunction Phrase
FRAG Fragment
INTJ Interjection
LST List marker
NAC Not A Constituent
NP Noun Phrase
NX Used within certain complex noun phrases to mark the head of the noun phrase
PP Prepositional Phrase
PRN Parenthetical
PRT Particle
QP Quantifier Phrase
RRC Reduced Relative Clause
UCP Unlike Coordinated Phrase
VP Verb Phrase
WHADJP Wh-adjective Phrase
WHADVP Wh-adverb Phrase
WHNP Wh-noun Phrase
WHPP Wh-prepositional Phrase
X Unknown, uncertain, or unbracketable

A.2 The BNC-sampler

A.2.1 CLAWS7 (C7) Tagset, or Enriched Tagset

148 POS tags (University Centre for Computer Corpus Research on Language
(UCREL), 1997; Wynne, 1996)
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APPGE possessive pronoun, pre-nominal
AT article
AT1 singular article
BCL before-clause marker
CC coordinating conjunction
CCB adversative coordinating conjunction
CS subordinating conjunction
CSA as (as conjunction)
CSN than (as conjunction)
CST that (as conjunction)
CSW whether (as conjunction)
DA ”after-determiner”, or post-determiner capable of pronominal function
DA1 singular post-determiner
DA2 plural post-determiner
DAR comparative post-determiner
DAT superlative post-determiner
DB ”before-determiner”, or pre-determiner capable of pronominal function
DB2 plural before-determiner
DD central determiner (capable of pronominal function)
DD1 singular determiner
DD2 plural determiner
DDQ wh-determiner
DDQGE wh-determiner, genitive
DDQV wh-ever determiner
EX existential there
FO formula
FU unclassified word
FW foreign word
GE germanic genitive marker
IF for (as preposition)
II general preposition
IO of (as preposition)
IW with, without (as prepositions)
JJ general adjective
JJR general comparative adjective
JJT general superlative adjective
JK catenative adjective
MC cardinal number,neutral for number
MC1 singular cardinal number
MC2 plural cardinal number
MCGE genitive cardinal number, neutral for number
MCMC hyphenated number
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MD ordinal number
MF fraction,neutral for number
ND1 singular noun of direction
NN common noun, neutral for number
NN1 singular common noun
NN2 plural common noun
NNA following noun of title
NNB preceding noun of title
NNL1 singular locative noun
NNL2 plural locative noun
NNO numeral noun, neutral for number
NNO2 numeral noun, plural
NNT1 temporal noun, singular
NNT2 temporal noun, plural
NNU unit of measurement, neutral for number
NNU1 singular unit of measurement
NNU2 plural unit of measurement
NP proper noun, neutral for number
NP1 singular proper noun
NP2 plural proper noun
NPD1 singular weekday noun
NPD2 plural weekday noun
NPM1 singular month noun
NPM2 plural month noun
PN indefinite pronoun, neutral for number
PN1 indefinite pronoun, singular
PNQO objective wh-pronoun
PNQS subjective wh-pronoun
PNQV wh-ever pronoun
PNX1 reflexive indefinite pronoun
PPGE nominal possessive personal pronoun
PPH1 3rd person sing. neuter personal pronoun
PPHO1 3rd person sing. objective personal pronoun
PPHO2 3rd person plural objective personal pronoun
PPHS1 3rd person sing. subjective personal pronoun
PPHS2 3rd person plural subjective personal pronoun
PPIO1 1st person sing. objective personal pronoun
PPIO2 1st person plural objective personal pronoun
PPIS1 1st person sing. subjective personal pronoun
PPIS2 1st person plural subjective personal pronoun
PPX1 singular reflexive personal pronoun
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PPX2 plural reflexive personal pronoun
PPY 2nd person personal pronoun
RA adverb, after nominal head
REX adverb introducing appositional constructions
RG degree adverb
RGQ wh-degree adverb
RGQV wh-ever degree adverb
RGR comparative degree adverb
RGT superlative degree adverb
RL locative adverb
RP prep. adverb, particle
RPK prep. adv., catenative
RR general adverb
RRQ wh-general adverb
RRQV wh-ever general adverb
RRR comparative general adverb
RRT superlative general adverb
RT quasi-nominal adverb of time
TO infinitive marker
UH interjection
VB0 be, base form
VBDR were
VBDZ was
VBG being
VBI be, infinitive
VBM am
VBN been
VBR are
VBZ is
VD0 do, base form
VDD did
VDG doing
VDI do, infinitive
VDN done
VDZ does
VH0 have, base form
VHD had (past tense)
VHG having
VHI have, infinitive
VHN had (past participle)
VHZ has
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VM modal auxiliary
VMK modal catenative
VV0 base form of lexical verb
VVD past tense of lexical verb
VVG -ing participle of lexical verb
VVGK -ing participle catenative
VVI infinitive
VVN past participle of lexical verb
VVNK past participle catenative
VVZ -s form of lexical verb
XX not, n’t
ZZ1 singular letter of the alphabet
ZZ2 plural letter of the alphabet
YBL punctuation tag - left bracket
YBR punctuation tag - right bracket
YCOL punctuation tag - colon
YCOM punctuation tag - comma
YDSH punctuation tag - dash
YEX punctuation tag - exclamation mark
YLIP punctuation tag - ellipsis
YQUE punctuation tag - question mark
YQUO punctuation tag - quotes
YSCOL punctuation tag - semicolon
YSTP punctuation tag - full-stop
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A.3 TIGER

A.3.1 Syntactic category labels

25 labels (Brants et al., 2002)
AA Superlative Phrase with am
AP Adjective Phrase
AVP Adverbial Phrase
CAC Coordinated Adposition
CAP Coordinated Adjektive phrase
CAVP Coordinated Adverbial phrase
CCP Coordinated Complementiser
CH Chunk
CNP Coordinated Noun Phrase
CO Coordination
CPP Coordinated Adpositional Phrase
CS Coordinated Sentence
CVP Coordinated Verb Phrase (non-finite)
CVZ Coordinated zu-marked Infinitive
DL Discourse level Constituent
ISU Idiosyncratis Unit
MTA Multi-Token Adjective
NM Multi-Token Number
NP Noun Phrase
PN Proper Noun
PP Adpositional Phrase
QL Quasi-Language
S Sentence
VP Verb Phrase (non-finite)
VZ Zu-marked Infinitive
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Plátek et al. (2001), 111
Pla and Molina (2004), 170, 171
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